論文の概要: Cuttlefish: Low-Rank Model Training without All the Tuning
- arxiv url: http://arxiv.org/abs/2305.02538v2
- Date: Fri, 5 May 2023 16:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 10:32:40.430554
- Title: Cuttlefish: Low-Rank Model Training without All the Tuning
- Title(参考訳): Cuttlefish: チューニング不要の低ランクモデルトレーニング
- Authors: Hongyi Wang, Saurabh Agarwal, Pongsakorn U-chupala, Yoshiki Tanaka,
Eric P. Xing, Dimitris Papailiopoulos
- Abstract要約: 自動低ランクトレーニングアプローチであるCuttlefishを紹介します。
カトルフィッシュは、すべての階層の安定したランクが収束すると、フルランクからローランクのトレーニングに切り替える。
以上の結果から,Cuttlefishはフルランクモデルの最大5.6倍のモデルを生成し,エンドツーエンドのトレーニングプロセスの最大1.2倍の高速化を実現している。
- 参考スコア(独自算出の注目度): 55.984294012024755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has shown that training low-rank neural networks can
effectively reduce the total number of trainable parameters without sacrificing
predictive accuracy, resulting in end-to-end speedups. However, low-rank model
training necessitates adjusting several additional factorization
hyperparameters, such as the rank of the factorization at each layer. In this
paper, we tackle this challenge by introducing Cuttlefish, an automated
low-rank training approach that eliminates the need for tuning factorization
hyperparameters. Cuttlefish leverages the observation that after a few epochs
of full-rank training, the stable rank (i.e., an approximation of the true
rank) of each layer stabilizes at a constant value. Cuttlefish switches from
full-rank to low-rank training once the stable ranks of all layers have
converged, setting the dimension of each factorization to its corresponding
stable rank. Our results show that Cuttlefish generates models up to 5.6 times
smaller than full-rank models, and attains up to a 1.2 times faster end-to-end
training process while preserving comparable accuracy. Moreover, Cuttlefish
outperforms state-of-the-art low-rank model training methods and other
prominent baselines. The source code for our implementation can be found at:
https://github.com/hwang595/Cuttlefish.
- Abstract(参考訳): 近年の研究では、低ランクニューラルネットワークのトレーニングにより、予測精度を犠牲にすることなく、トレーニング可能なパラメータの総数を効果的に削減できることが示されている。
しかし、低ランクモデルトレーニングでは、各層における因子化のランクなど、いくつかの追加の因子化ハイパーパラメータを調整する必要がある。
本稿では,因子化ハイパーパラメータのチューニングを不要にする低ランク自動トレーニング手法であるcuttlefishを導入することで,この課題に挑戦する。
カトルフィッシュは、フルランクトレーニングのいくつかのエポックの後、各層の安定なランク(すなわち、真のランクの近似)が一定値で安定化するという観察を利用する。
クトルフィッシュは全ての層の安定なランクが収束すると、フルランクからローランクのトレーニングに切り替え、それぞれの因子分解の次元を対応する安定なランクに設定する。
この結果から,Cuttlefishはフルランクモデルよりも最大5.6倍のモデルを生成し,最大1.2倍高速なエンドツーエンドトレーニングプロセスを実現するとともに,同等の精度を維持した。
さらに、クトルフィッシュは最先端の低ランクモデルのトレーニング方法や他の顕著なベースラインよりも優れています。
私たちの実装のソースコードは、https://github.com/hwang595/Cuttlefish.com/。
関連論文リスト
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Training Acceleration of Low-Rank Decomposed Networks using Sequential
Freezing and Rank Quantization [5.914653351242832]
そこで本研究では,分解に少数のランクを使用することなく,低階分解モデルを高速化する2つの手法を提案する。
これらの手法には、ランク最適化とシーケンシャルな層凍結が含まれる。
実験によると、これらの手法は、トレーニング中に60%まで、組み合わせると推論時に37%まで、モデルのスループットを向上させることができる。
論文 参考訳(メタデータ) (2023-09-07T16:33:42Z) - Maestro: Uncovering Low-Rank Structures via Trainable Decomposition [15.254107731735553]
近年、ディープニューラルネットワーク(DNN)はAIのブレークスルーの大きな要因となっている。
より正確で安全になるにつれて、ますます大きなものになってきています。
つまり、トレーニングはますますコストと時間がかかります。
トレーニング可能な低ランク層のためのフレームワークであるMaestroを提案する。
論文 参考訳(メタデータ) (2023-08-28T23:08:15Z) - InRank: Incremental Low-Rank Learning [85.6380047359139]
勾配に基づくトレーニングは、トレーニング中のランクの段階的な増加を通じて、ニューラルネットワークを低ランクのソリューションに向けて暗黙的に正規化する。
既存のトレーニングアルゴリズムでは、計算効率を向上させるために、ローランクな特性を活用できない。
InRank(Incremental Low-Rank Learning)は,低ランク行列として累積重み更新を明示的に表現する学習アルゴリズムである。
論文 参考訳(メタデータ) (2023-06-20T03:03:04Z) - Rank-adaptive spectral pruning of convolutional layers during training [2.3488056916440856]
本稿では,畳み込みをテンソルタッカー形式に分解し,学習中の畳み込みカーネルのタッカーランクを適応的に推定する低パラメトリックトレーニング手法を提案する。
本研究では,全ベースライン性能を確実に近似し,損失降下を保証できるロバストなトレーニングアルゴリズムを得る。
提案手法はトレーニングコストを大幅に削減し,高い性能を達成し,全ベースラインに匹敵する性能を達成し,一貫して競合する低ランクアプローチよりも優れることを示す。
論文 参考訳(メタデータ) (2023-05-30T14:20:51Z) - Slimmable Networks for Contrastive Self-supervised Learning [67.21528544724546]
自己教師付き学習は、大規模なモデルを事前訓練する上で大きな進歩を遂げるが、小さなモデルでは苦労する。
追加の教師を必要とせずに、事前訓練された小型モデルを得るための一段階のソリューションを提案する。
スリム化可能なネットワークは、完全なネットワークと、様々なネットワークを得るために一度にトレーニングできるいくつかの重み共有サブネットワークから構成される。
論文 参考訳(メタデータ) (2022-09-30T15:15:05Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Pufferfish: Communication-efficient Models At No Extra Cost [7.408148824204065]
Pufferfishはコミュニケーションと効率的な分散トレーニングフレームワークです。
低ランクで事前リファクタリングされたディープネットワークをトレーニングすることで、勾配圧縮をモデルトレーニングプロセスに組み込む。
最先端の市販の深層モデルと同じ精度を実現している。
論文 参考訳(メタデータ) (2021-03-05T20:46:39Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。