A Cluster-Based Opposition Differential Evolution Algorithm Boosted by a
Local Search for ECG Signal Classification
- URL: http://arxiv.org/abs/2305.02731v2
- Date: Fri, 6 Oct 2023 16:03:47 GMT
- Title: A Cluster-Based Opposition Differential Evolution Algorithm Boosted by a
Local Search for ECG Signal Classification
- Authors: Mehran Pourvahab, Seyed Jalaleddin Mousavirad, Virginie Felizardo,
Nuno Pombo, Henriques Zacarias, Hamzeh Mohammadigheymasi, Sebasti\~ao Pais,
Seyed Nooreddin Jafari, Nuno M.Garcia
- Abstract summary: This paper proposes a novel approach based on an improved differential evolution (DE) algorithm for ECG signal classification.
In an extensive set of experiments, we showed that our proposed training algorithm could provide better results than the conventional training algorithms.
- Score: 1.9738259547092656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram (ECG) signals, which capture the heart's electrical
activity, are used to diagnose and monitor cardiac problems. The accurate
classification of ECG signals, particularly for distinguishing among various
types of arrhythmias and myocardial infarctions, is crucial for the early
detection and treatment of heart-related diseases. This paper proposes a novel
approach based on an improved differential evolution (DE) algorithm for ECG
signal classification for enhancing the performance. In the initial stages of
our approach, the preprocessing step is followed by the extraction of several
significant features from the ECG signals. These extracted features are then
provided as inputs to an enhanced multi-layer perceptron (MLP). While MLPs are
still widely used for ECG signal classification, using gradient-based training
methods, the most widely used algorithm for the training process, has
significant disadvantages, such as the possibility of being stuck in local
optimums. This paper employs an enhanced differential evolution (DE) algorithm
for the training process as one of the most effective population-based
algorithms. To this end, we improved DE based on a clustering-based strategy,
opposition-based learning, and a local search. Clustering-based strategies can
act as crossover operators, while the goal of the opposition operator is to
improve the exploration of the DE algorithm. The weights and biases found by
the improved DE algorithm are then fed into six gradient-based local search
algorithms. In other words, the weights found by the DE are employed as an
initialization point. Therefore, we introduced six different algorithms for the
training process (in terms of different local search algorithms). In an
extensive set of experiments, we showed that our proposed training algorithm
could provide better results than the conventional training algorithms.
Related papers
- The Rlign Algorithm for Enhanced Electrocardiogram Analysis through R-Peak Alignment for Explainable Classification and Clustering [34.88496713576635]
We aim to reintroduce shallow learning techniques, including support vector machines and principal components analysis, into ECG signal processing.
To this end, we developed and evaluated a transformation that effectively restructures ECG signals into a fully structured format.
Our approach demonstrates a significant advantage for shallow machine learning methods over CNNs, especially when dealing with limited training data.
arXiv Detail & Related papers (2024-07-22T11:34:47Z) - Artificial Cardiac Conduction System: Simulating Heart Function for Advanced Computational Problem Solving [7.939018398138461]
This work proposes a novel bio-inspired metaheuristic called Artificial Cardiac Conduction System (ACCS)
The ACCS algorithm imitates the functional behaviour of the human heart that generates and sends signals to the heart muscle, initiating it to contract.
Four nodes in the myocardium layer participate in generating and controlling heart rate, such as the sinoatrial, atrioventricular, bundle of His, and Purkinje fibres.
arXiv Detail & Related papers (2024-01-12T09:13:54Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
This paper proposes a routing system for IoT healthcare platforms based on Dynamic Source Routing (DSR) and Routing by Energy and Link Quality (REL)
Deep-ECG will employ a deep CNN to extract important characteristics, which will then be compared using simple and fast distance functions.
The results show that the proposed strategy outperforms others in terms of classification accuracy.
arXiv Detail & Related papers (2022-02-08T13:37:23Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.