論文の概要: Multi-Domain Learning From Insufficient Annotations
- arxiv url: http://arxiv.org/abs/2305.02757v1
- Date: Thu, 4 May 2023 11:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 15:53:17.679866
- Title: Multi-Domain Learning From Insufficient Annotations
- Title(参考訳): アノテーション不足による多領域学習
- Authors: Rui He, Shengcai Liu, Jiahao Wu, Shan He, Ke Tang
- Abstract要約: マルチドメイン学習とは、異なるドメインから収集されたデータセット上にモデルまたはモデルのセットを同時に構築することを指す。
本稿では,アノテーション不足の影響を軽減するために,マルチドメインコントラスト学習という新しい手法を提案する。
5つのデータセットにわたる実験結果から、MDCLは様々なSPモデルに対して顕著な改善をもたらすことが示された。
- 参考スコア(独自算出の注目度): 26.83058974786833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-domain learning (MDL) refers to simultaneously constructing a model or
a set of models on datasets collected from different domains. Conventional
approaches emphasize domain-shared information extraction and domain-private
information preservation, following the shared-private framework (SP models),
which offers significant advantages over single-domain learning. However, the
limited availability of annotated data in each domain considerably hinders the
effectiveness of conventional supervised MDL approaches in real-world
applications. In this paper, we introduce a novel method called multi-domain
contrastive learning (MDCL) to alleviate the impact of insufficient annotations
by capturing both semantic and structural information from both labeled and
unlabeled data.Specifically, MDCL comprises two modules: inter-domain semantic
alignment and intra-domain contrast. The former aims to align annotated
instances of the same semantic category from distinct domains within a shared
hidden space, while the latter focuses on learning a cluster structure of
unlabeled instances in a private hidden space for each domain. MDCL is readily
compatible with many SP models, requiring no additional model parameters and
allowing for end-to-end training. Experimental results across five textual and
image multi-domain datasets demonstrate that MDCL brings noticeable improvement
over various SP models.Furthermore, MDCL can further be employed in
multi-domain active learning (MDAL) to achieve a superior initialization,
eventually leading to better overall performance.
- Abstract(参考訳): マルチドメイン学習(MDL)とは、異なるドメインから収集されたデータセット上にモデルまたはモデルのセットを同時に構築することである。
従来のアプローチでは、共有プライベートフレームワーク(spモデル)に従って、ドメイン共有情報抽出とドメインプライベート情報保存を重視する。
しかし、各領域における注釈付きデータの限られた利用は、実世界のアプリケーションにおける従来の教師付きMDLアプローチの有効性を著しく妨げている。
本稿では,ラベル付きデータとラベル付きデータの両方から意味的情報と構造的情報の両方をキャプチャすることで,アノテーションの不足の影響を軽減するマルチドメインコントラスト学習(mdcl)と呼ばれる新しい手法を提案する。
前者は共有隠し空間内の異なるドメインから同じ意味カテゴリーの注釈付きインスタンスを整合させることを目的としており、後者は各ドメインのプライベートな隠れ空間でラベル付きインスタンスのクラスタ構造を学ぶことに焦点を当てている。
MDCLは多くのSPモデルと容易に互換性があり、追加のモデルパラメータを必要としない。
5つのテキストと画像のマルチドメインデータセットによる実験結果から、MDCLは様々なSPモデルに対して顕著な改善をもたらすことが示された。
関連論文リスト
- Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
マルチタスク学習を用いた2相表現学習手法を提案する。
我々は、先行空間と潜時空間の間の相互情報の最小化により、潜時空間を解き放つ。
モデルの有効性を複数のサイバーセキュリティデータセットで評価する。
論文 参考訳(メタデータ) (2023-12-28T17:24:13Z) - Adapting Self-Supervised Representations to Multi-Domain Setups [47.03992469282679]
現在の最先端の自己教師型アプローチは、個々のドメインで訓練するときに有効であるが、目に見えないドメインでは限定的な一般化を示す。
本稿では,汎用的で軽量なドメイン・ディスタングル・モジュールを提案する。
論文 参考訳(メタデータ) (2023-09-07T20:05:39Z) - M2D2: A Massively Multi-domain Language Modeling Dataset [76.13062203588089]
ドメイン適応(LM)を研究するための細粒度多ドメインコーパスM2D2を提案する。
ウィキペディアとArXivから派生したカテゴリを用いて、各データソース内のドメインを22のグループに分類する。
我々は、LMをドメイン階層に沿って適用することの利点を示し、より少量のドメイン固有のデータに適応することで、ドメイン内のパフォーマンスが向上することを示した。
論文 参考訳(メタデータ) (2022-10-13T21:34:52Z) - Multi-Modal Cross-Domain Alignment Network for Video Moment Retrieval [55.122020263319634]
ビデオモーメント検索(VMR)は、与えられた言語クエリに従って、未編集のビデオからターゲットモーメントをローカライズすることを目的としている。
本稿では、新しいタスクであるクロスドメインVMRに焦点を当て、完全なアノテーション付きデータセットをひとつのドメインで利用できるが、関心のあるドメインは、注釈なしのデータセットのみを含む。
本稿では、アノテーションの知識をソースドメインからターゲットドメインに転送するマルチモーダル・クロスドメインアライメント・ネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-23T12:58:20Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
本稿では,異なる領域からの画像を投影することで,ドメインに依存しない遅延埋め込みを学習する手法を提案する。
挑戦的なDomainNetとDomainNet-LSベンチマークの実験は、既存のメソッドよりもアプローチの方が優れていることを示している。
論文 参考訳(メタデータ) (2021-07-12T17:57:46Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Multifaceted Context Representation using Dual Attention for Ontology
Alignment [6.445605125467574]
オントロジーアライメントは、データ統合、データ転送、データ準備など、さまざまな分野に適用できる重要な研究課題である。
We propose VeeAlign, a Deep Learning based model that using a dual-attention mechanism to compute the contextualized representation of a concept to learn alignments。
我々は、異なるドメインや多言語設定の様々なデータセットに対するアプローチを検証するとともに、SOTA法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-16T18:28:38Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z) - Unified Multi-Domain Learning and Data Imputation using Adversarial
Autoencoder [5.933303832684138]
マルチドメイン学習(MDL)、データ計算(DI)、マルチタスク学習(MTL)を組み合わせた新しいフレームワークを提案する。
本手法のコアとなるのは,(1)ドメイン間の差を小さくするためにドメイン不変な埋め込みを生成すること,(2)各ドメインのデータ分布を学習し,欠落データに対するデータ計算を正しく行うこと,である。
論文 参考訳(メタデータ) (2020-03-15T19:55:07Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
我々はUniversal-RCNNと呼ばれる新しいユニバーサルオブジェクト検出器を提案する。
まず、すべてのカテゴリの高レベルなセマンティック表現を統合することで、グローバルなセマンティックプールを生成する。
ドメイン内推論モジュールは、空間認識GCNによってガイドされる1つのデータセット内のスパースグラフ表現を学習し、伝播する。
論文 参考訳(メタデータ) (2020-02-18T07:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。