論文の概要: Multi-Modality Deep Network for JPEG Artifacts Reduction
- arxiv url: http://arxiv.org/abs/2305.02760v1
- Date: Thu, 4 May 2023 11:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 15:41:05.952164
- Title: Multi-Modality Deep Network for JPEG Artifacts Reduction
- Title(参考訳): jpegアーティファクト削減のためのマルチモダリティディープネットワーク
- Authors: Xuhao Jiang, Weimin Tan, Qing Lin, Chenxi Ma, Bo Yan, Liquan Shen
- Abstract要約: テキスト誘導JPEGアーティファクト削減のためのマルチモーダル融合学習法を提案する。
提案手法は,最先端の手法と比較して,より優れたデブロッキング結果が得られる。
- 参考スコア(独自算出の注目度): 33.02405073842042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, many convolutional neural network-based models are designed
for JPEG artifacts reduction, and have achieved notable progress. However, few
methods are suitable for extreme low-bitrate image compression artifacts
reduction. The main challenge is that the highly compressed image loses too
much information, resulting in reconstructing high-quality image difficultly.
To address this issue, we propose a multimodal fusion learning method for
text-guided JPEG artifacts reduction, in which the corresponding text
description not only provides the potential prior information of the highly
compressed image, but also serves as supplementary information to assist in
image deblocking. We fuse image features and text semantic features from the
global and local perspectives respectively, and design a contrastive loss built
upon contrastive learning to produce visually pleasing results. Extensive
experiments, including a user study, prove that our method can obtain better
deblocking results compared to the state-of-the-art methods.
- Abstract(参考訳): 近年、JPEGアーティファクトの削減のために多くの畳み込みニューラルネットワークベースのモデルが設計され、顕著な進歩を遂げている。
しかし、極端に低ビット画像圧縮アーティファクトの削減に適した方法はほとんどない。
主な課題は、高度に圧縮された画像が過剰な情報を失い、高品質な画像の再構成が困難になることである。
そこで本研究では,高圧縮画像の潜在的な事前情報を提供するだけでなく,画像のデブロッキングを支援する補助情報としても機能する,テキスト誘導JPEGアーティファクト削減のためのマルチモーダル融合学習手法を提案する。
画像特徴とテキスト意味特徴をそれぞれグローバル視点とローカル視点から融合させ,コントラスト学習に基づくコントラスト損失をデザインし,視覚的に満足できる結果を得る。
ユーザスタディを含む広範な実験により,本手法は最先端手法と比較してより優れたデブロッキング結果が得られることを証明した。
関連論文リスト
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
我々は,高品質でリアルな肖像画を復元することを目的とした,ブラインドフェイス修復のための新しいフレームワークであるENTEDを提案する。
劣化した入力画像と参照画像の間で高品質なテクスチャ特徴を伝達するために,テクスチャ抽出と分布の枠組みを利用する。
われわれのフレームワークにおけるStyleGANのようなアーキテクチャは、現実的な画像を生成するために高品質な潜伏符号を必要とする。
論文 参考訳(メタデータ) (2024-01-13T04:54:59Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Multi-Modality Deep Network for Extreme Learned Image Compression [31.532613540054697]
本稿では,テキストのセマンティック情報を先行情報として利用して画像圧縮性能を誘導する,テキスト誘導画像圧縮のためのマルチモーダル機械学習手法を提案する。
さらに,画像とテキストの特徴を融合させるために,画像テキストアテンションモジュールと画像検索サプリメントモジュールを採用し,セマンティック・コンシステント・ロスを改良し,セマンティック・完全再構築を実現する。
論文 参考訳(メタデータ) (2023-04-26T14:22:59Z) - High-Perceptual Quality JPEG Decoding via Posterior Sampling [13.238373528922194]
JPEGアーチファクト修正のための異なるパラダイムを提案する。
我々は、圧縮された入力と整合しながら、シャープで詳細で視覚的に再構成された画像を得ることを目指している。
我々のソリューションは、完全な整合性のある入力に対して、多種多様な可塑性かつ高速な再構成を提供する。
論文 参考訳(メタデータ) (2022-11-21T19:47:59Z) - Extreme Generative Image Compression by Learning Text Embedding from
Diffusion Models [13.894251782142584]
本稿では,画像を短いテキスト埋め込みとして保存する可能性を示す生成画像圧縮手法を提案する。
本手法は、知覚的品質と多様性の両方の観点から、他の最先端のディープラーニング手法よりも優れている。
論文 参考訳(メタデータ) (2022-11-14T22:54:19Z) - Convolutional Neural Network (CNN) to reduce construction loss in JPEG
compression caused by Discrete Fourier Transform (DFT) [0.0]
畳み込みニューラルネットワーク(CNN)は他の多くのディープニューラルネットワークよりも注目されている。
本研究では,オートエンコーダを用いた効率的な画像圧縮手法を提案する。
論文 参考訳(メタデータ) (2022-08-26T12:46:16Z) - Learning a Single Model with a Wide Range of Quality Factors for JPEG
Image Artifacts Removal [24.25688335628976]
ロスシー圧縮は、圧縮された画像にアーティファクトをもたらし、視覚的品質を低下させる。
本稿では,高度に堅牢な圧縮アーティファクト除去ネットワークを提案する。
提案するネットワークは,幅広い品質要因を扱うためにトレーニング可能な単一モデルアプローチである。
論文 参考訳(メタデータ) (2020-09-15T08:16:58Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
ロスシー画像圧縮は、通信帯域を節約するために広範に行われ、望ましくない圧縮アーティファクトをもたらす。
圧縮画像に対する資源効率の高いブラインド品質向上手法(RBQE)を提案する。
提案手法は, 評価された画像の品質に応じて, 自動的にエンハンスメントを終了するか, 継続するかを決定することができる。
論文 参考訳(メタデータ) (2020-06-30T07:38:47Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
我々はJPEGファイル量子化行列を用いたアーティファクト修正のための新しいアーキテクチャを開発した。
これにより、特定の品質設定のためにトレーニングされたモデルに対して、単一のモデルで最先端のパフォーマンスを達成できます。
論文 参考訳(メタデータ) (2020-04-17T00:10:08Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。