NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads
- URL: http://arxiv.org/abs/2305.03027v1
- Date: Thu, 4 May 2023 17:52:18 GMT
- Title: NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads
- Authors: Tobias Kirschstein, Shenhan Qian, Simon Giebenhain, Tim Walter,
Matthias Nie{\ss}ner
- Abstract summary: We propose a new multi-view capture setup composed of 16 calibrated machine vision cameras.
With our setup, we collect a new dataset of over 4700 high-resolution, high-framerate sequences of more than 220 human heads.
In order to reconstruct high-fidelity human heads, we propose Dynamic Neural Radiance Fields using Hash Ensembles.
- Score: 2.5999037208435705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We focus on reconstructing high-fidelity radiance fields of human heads,
capturing their animations over time, and synthesizing re-renderings from novel
viewpoints at arbitrary time steps. To this end, we propose a new multi-view
capture setup composed of 16 calibrated machine vision cameras that record
time-synchronized images at 7.1 MP resolution and 73 frames per second. With
our setup, we collect a new dataset of over 4700 high-resolution,
high-framerate sequences of more than 220 human heads, from which we introduce
a new human head reconstruction benchmark. The recorded sequences cover a wide
range of facial dynamics, including head motions, natural expressions,
emotions, and spoken language. In order to reconstruct high-fidelity human
heads, we propose Dynamic Neural Radiance Fields using Hash Ensembles
(NeRSemble). We represent scene dynamics by combining a deformation field and
an ensemble of 3D multi-resolution hash encodings. The deformation field allows
for precise modeling of simple scene movements, while the ensemble of hash
encodings helps to represent complex dynamics. As a result, we obtain radiance
field representations of human heads that capture motion over time and
facilitate re-rendering of arbitrary novel viewpoints. In a series of
experiments, we explore the design choices of our method and demonstrate that
our approach outperforms state-of-the-art dynamic radiance field approaches by
a significant margin.
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - PKU-DyMVHumans: A Multi-View Video Benchmark for High-Fidelity Dynamic Human Modeling [33.00658723633997]
We present PKU-DyMVHumans, a versatile human-centric dataset for high-fidelity reconstruction and rendering of dynamic human scenarios.
It comprises 8.2 million frames captured by more than 56 cameras synchronized across diverse scenarios.
Inspired by recent advancements in neural field (NeRF)-based scene representations, we carefully set up an off-the-shelf framework.
arXiv Detail & Related papers (2024-03-24T10:06:40Z) - FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models [85.16273912625022]
We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from audio signal.
To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of human heads.
arXiv Detail & Related papers (2023-12-13T19:01:07Z) - BakedAvatar: Baking Neural Fields for Real-Time Head Avatar Synthesis [7.485318043174123]
We introduce BakedAvatar, a novel representation for real-time neural head avatar.
Our approach extracts layered meshes from learned isosurfaces of the head and computes expression-, pose-, and view-dependent appearances.
Experimental results demonstrate that our representation generates photorealistic results of comparable quality to other state-the-art methods.
arXiv Detail & Related papers (2023-11-09T17:05:53Z) - HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion [7.592039690054564]
We introduce HumanRF, a 4D dynamic neural scene representation that captures full-body appearance in motion from multi-view video input.
Our novel representation acts as a dynamic video encoding that captures fine details at high compression rates.
We demonstrate challenges that emerge from using such high-resolution data and show that our newly introduced HumanRF effectively leverages this data.
arXiv Detail & Related papers (2023-05-10T17:59:55Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z) - Animatable Neural Radiance Fields from Monocular RGB Video [72.6101766407013]
We present animatable neural radiance fields for detailed human avatar creation from monocular videos.
Our approach extends neural radiance fields to the dynamic scenes with human movements via introducing explicit pose-guided deformation.
In experiments we show that the proposed approach achieves 1) implicit human geometry and appearance reconstruction with high-quality details, 2) photo-realistic rendering of the human from arbitrary views, and 3) animation of the human with arbitrary poses.
arXiv Detail & Related papers (2021-06-25T13:32:23Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in
Motion with Neural Rendering [9.600908665766465]
We present STaR, a novel method that performs Self-supervised Tracking and Reconstruction of dynamic scenes with rigid motion from multi-view RGB videos without any manual annotation.
We show that our method can render photorealistic novel views, where novelty is measured on both spatial and temporal axes.
arXiv Detail & Related papers (2020-12-22T23:45:28Z) - Learning Compositional Radiance Fields of Dynamic Human Heads [13.272666180264485]
We propose a novel compositional 3D representation that combines the best of previous methods to produce both higher-resolution and faster results.
Differentiable volume rendering is employed to compute photo-realistic novel views of the human head and upper body.
Our approach achieves state-of-the-art results for synthesizing novel views of dynamic human heads and the upper body.
arXiv Detail & Related papers (2020-12-17T22:19:27Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.