Electronic Excited States from a Variance-Based Contracted Quantum
Eigensolver
- URL: http://arxiv.org/abs/2305.03044v2
- Date: Sat, 6 May 2023 20:26:11 GMT
- Title: Electronic Excited States from a Variance-Based Contracted Quantum
Eigensolver
- Authors: Yuchen Wang and David A. Mazziotti
- Abstract summary: We leverage the advantages of quantum computers to develop an algorithm for the highly accurate calculation of excited states.
We apply the algorithm in a classical simulation without noise to computing the ground and excited states of H$_4$ and BH.
- Score: 6.5460423831540275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic excited states of molecules are central to many physical and
chemical processes, and yet they are typically more difficult to compute than
ground states. In this paper we leverage the advantages of quantum computers to
develop an algorithm for the highly accurate calculation of excited states. We
solve a contracted Schr\"odinger equation (CSE) -- a contraction (projection)
of the Schr\"odinger equation onto the space of two electrons -- whose
solutions correspond identically to the ground and excited states of the
Schr\"odinger equation. While recent quantum algorithms for solving the CSE,
known as contracted quantum eigensolvers (CQE), have focused on ground states,
we develop a CQE based on the variance that is designed to optimize rapidly to
a ground or excited state. We apply the algorithm in a classical simulation
without noise to computing the ground and excited states of H$_{4}$ and BH.
Related papers
- Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Quantum simulation of excited states from parallel contracted quantum
eigensolvers [5.915403570478968]
We show that a ground-state contracted quantum eigensolver can be generalized to compute any number of quantum eigenstates simultaneously.
We introduce two excited-state CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm.
arXiv Detail & Related papers (2023-11-08T23:52:31Z) - Many-Body Excited States with a Contracted Quantum Eigensolver [0.0]
We develop an excited state approach based on the contracted quantum eigensolver (ES-CQE)
We show the ES-CQE near-exact accuracy across the majority of states, covering regions of strong and weak electron correlation.
arXiv Detail & Related papers (2023-05-16T17:53:07Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Verifiably Exact Solution of the Electronic Schr\"odinger Equation on
Quantum Devices [0.0]
We present an algorithm that yields verifiably exact solutions of the many-electron Schr"odinger equation.
We demonstrate the algorithm on both quantum simulators and noisy quantum computers.
arXiv Detail & Related papers (2023-03-01T19:00:00Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.