論文の概要: Employing Hybrid Deep Neural Networks on Dari Speech
- arxiv url: http://arxiv.org/abs/2305.03200v1
- Date: Thu, 4 May 2023 23:10:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 15:57:50.347168
- Title: Employing Hybrid Deep Neural Networks on Dari Speech
- Title(参考訳): dari音声におけるハイブリッドディープニューラルネットワークの利用
- Authors: Jawid Ahmad Baktash and Mursal Dawodi
- Abstract要約: 本稿では,Mel- frequency cepstral coefficients (MFCCs) 特徴抽出法を用いて,Dari言語における個々の単語の認識に焦点を当てる。
我々は、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、多層パーセプトロン(MLP)の3つの異なるディープニューラルネットワークモデルを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is an extension of our previous conference paper. In recent years,
there has been a growing interest among researchers in developing and improving
speech recognition systems to facilitate and enhance human-computer
interaction. Today, Automatic Speech Recognition (ASR) systems have become
ubiquitous, used in everything from games to translation systems, robots, and
more. However, much research is still needed on speech recognition systems for
low-resource languages. This article focuses on the recognition of individual
words in the Dari language using the Mel-frequency cepstral coefficients
(MFCCs) feature extraction method and three different deep neural network
models: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and
Multilayer Perceptron (MLP), as well as two hybrid models combining CNN and
RNN. We evaluate these models using an isolated Dari word corpus that we have
created, consisting of 1000 utterances for 20 short Dari terms. Our study
achieved an impressive average accuracy of 98.365%.
- Abstract(参考訳): 本論文は,前回の会議論文の拡張である。
近年,人間とコンピュータの相互作用を促進・強化する音声認識システムの開発や改良に研究者の間で関心が高まっている。
今日では、自動音声認識(asr)システムが普及し、ゲームから翻訳システム、ロボットなど、あらゆる場面で使われている。
しかし、低リソース言語のための音声認識システムでは、多くの研究がいまだに必要である。
本稿では,メル周波数ケプストラム係数(MFCC)特徴抽出法と,畳み込みニューラルネットワーク(CNN),リカレントニューラルネットワーク(RNN),MLP(Multilayer Perceptron)の3つの異なるディープニューラルネットワークモデルと,CNNとRNNを組み合わせた2つのハイブリッドモデルを用いて,ダリ語における個々の単語の認識に焦点を当てる。
我々はこれらのモデルについて,20の短いダリ語を用いた1000発話からなる孤立したダリ語コーパスを用いて評価した。
我々の研究は98.365%という印象的な平均精度を達成した。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Keyword spotting -- Detecting commands in speech using deep learning [2.709166684084394]
生波形をMel Frequency Cepstral Coefficients (MFCC)に変換することで特徴工学を実現する。
実験では, BiLSTM と Attention を用いた RNN が 93.9% の精度で最高の性能を達成した。
論文 参考訳(メタデータ) (2023-12-09T19:04:17Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Canonical Cortical Graph Neural Networks and its Application for Speech
Enhancement in Future Audio-Visual Hearing Aids [0.726437825413781]
本稿では, 層内変調を用いたマルチモーダル情報と正準相関解析(CCA)を組み合わせた, より生物学的に妥当な自己教師型機械学習手法を提案する。
この手法は、よりクリーンなオーディオ再構成とエネルギー効率の両方を考慮した最近の最先端の結果より優れており、スモーザーでスモーザーなニューロンの発火速度分布によって説明されている。
論文 参考訳(メタデータ) (2022-06-06T15:20:07Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z) - Recent Progress in the CUHK Dysarthric Speech Recognition System [66.69024814159447]
障害音声は、現在のデータ集約型ディープニューラルネットワーク(DNN)に基づく自動音声認識技術に対して、幅広い課題を提示している。
本稿では,香港の中国大学における音声認識システムの性能向上に向けた最近の研究成果について述べる。
論文 参考訳(メタデータ) (2022-01-15T13:02:40Z) - Real-time Speaker counting in a cocktail party scenario using
Attention-guided Convolutional Neural Network [60.99112031408449]
重なり合う音声におけるアクティブ話者数を推定するために,CNN(Real-time, Single-channel attention-guided Convolutional Neural Network)を提案する。
提案システムは,CNNモデルを用いて音声スペクトルから高レベル情報を抽出する。
WSJコーパスを用いた重畳音声のシミュレーション実験により,従来の時間平均プーリングに比べて,注意解がほぼ3%向上することが示されている。
論文 参考訳(メタデータ) (2021-10-30T19:24:57Z) - Is Attention always needed? A Case Study on Language Identification from
Speech [1.162918464251504]
本研究では,畳み込みリカレントニューラルネットワーク(CRNN)を用いたLIDを提案する。
CRNNベースのLIDは、音声サンプルのMel- frequency Cepstral Coefficient(MFCC)特性で動作するように設計されている。
LIDモデルは言語的に類似した言語に対して97%から100%のハイパフォーマンスレベルを示す。
論文 参考訳(メタデータ) (2021-10-05T16:38:57Z) - On the Effectiveness of Neural Text Generation based Data Augmentation
for Recognition of Morphologically Rich Speech [0.0]
我々は、RNNLMからの知識をテキスト生成に基づくデータ拡張による単一パスBNLMに転送することで、会話音声書き起こしシステムのオンライン性能を大幅に改善した。
第1パスでRNN-BNLMを使用し、第2パスで、オフラインのASR結果をさらに改善できることが示される。
論文 参考訳(メタデータ) (2020-06-09T09:01:04Z) - Conformer: Convolution-augmented Transformer for Speech Recognition [60.119604551507805]
最近、トランスフォーマーと畳み込みニューラルネットワーク(CNN)に基づくモデルが、自動音声認識(ASR)の有望な結果を示している。
音声認識のための畳み込み拡張変換器,Conformerを提案する。
広く使われているLibriSpeechベンチマークでは、言語モデルを用いずにWERが2.1%/4.3%、テスト/テストの外部言語モデルで1.9%/3.9%を達成した。
論文 参考訳(メタデータ) (2020-05-16T20:56:25Z) - AutoSpeech: Neural Architecture Search for Speaker Recognition [108.69505815793028]
本稿では,AutoSpeech という名称の話者認識タスクに対して,最初のニューラルアーキテクチャ探索アプローチを提案する。
提案アルゴリズムはまず,ニューラルネットワークの最適操作の組み合わせを特定し,その後,複数回重ねてCNNモデルを導出する。
得られたCNNアーキテクチャは,モデル複雑性を低減しつつ,VGG-M,ResNet-18,ResNet-34のバックボーンに基づく現在の話者認識システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-05-07T02:53:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。