論文の概要: Expository Text Generation: Imitate, Retrieve, Paraphrase
- arxiv url: http://arxiv.org/abs/2305.03276v2
- Date: Mon, 23 Oct 2023 01:32:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 12:45:46.161282
- Title: Expository Text Generation: Imitate, Retrieve, Paraphrase
- Title(参考訳): 露出テキスト生成:模倣,検索,パラフレーズ
- Authors: Nishant Balepur, Jie Huang, Kevin Chen-Chuan Chang
- Abstract要約: 本稿では,トピックに対して,正確かつスタイリスティックに一貫性のあるテキストを自動的に生成する,例示テキスト生成のタスクを提案する。
我々は、検索強化モデルの限界を克服し、コンテンツ計画、事実検索、言い換えを反復的に実行するIRPを開発する。
我々は、IRPが読者に正確に通知する実例と組織的な説明文を生成することを示す。
- 参考スコア(独自算出の注目度): 26.43857184008374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expository documents are vital resources for conveying complex information to
readers. Despite their usefulness, writing expository text by hand is a
challenging process that requires careful content planning, obtaining facts
from multiple sources, and the ability to clearly synthesize these facts. To
ease these burdens, we propose the task of expository text generation, which
seeks to automatically generate an accurate and stylistically consistent
expository text for a topic by intelligently searching a knowledge source. We
solve our task by developing IRP, a framework that overcomes the limitations of
retrieval-augmented models and iteratively performs content planning, fact
retrieval, and rephrasing. Through experiments on three diverse,
newly-collected datasets, we show that IRP produces factual and organized
expository texts that accurately inform readers.
- Abstract(参考訳): 展示資料は、複雑な情報を読者に伝えるための重要なリソースである。
その有用性にもかかわらず、手書きの例示テキストを書くことは、注意深いコンテンツ計画、複数の情報源からの事実の取得、これらの事実を明確に合成する能力を必要とする難しいプロセスである。
これらの負担を軽減するために,知識源をインテリジェントに検索することで,トピックに対して正確かつスタイリスト的に一貫性のある露出テキストを自動的に生成することを目指す,露出テキスト生成の課題を提案する。
我々は、検索強化モデルの限界を克服し、コンテンツ計画、事実検索、言い換えを反復的に実行するIRPを開発することで、我々の課題を解決する。
新たに収集された3つの多様なデータセットの実験を通して、IRPは、読者に正確に知らせる実例と組織的な説明文を生成する。
関連論文リスト
- ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
長い形式のテキスト生成には、幅と深さの両方で複雑なクエリに対処する一貫性のある包括的な応答が必要である。
既存の反復的な検索拡張生成アプローチは、複雑なクエリの各側面を深く掘り下げるのに苦労することが多い。
本稿では,コンテキスト駆動型木構造検索手法を用いた新しいフレームワークであるConTReGenを紹介する。
論文 参考訳(メタデータ) (2024-10-20T21:17:05Z) - Contextual Knowledge Pursuit for Faithful Visual Synthesis [33.191847768674826]
大きな言語モデル(LLM)では、幻覚を減らすための一般的な戦略は、外部データベースから事実知識を取得することである。
本稿では,外部知識とパラメトリック知識の相補的強みを利用して,生成元が信頼できる視覚コンテンツを生成できるようにするフレームワークであるコンパラメトリック知識探索法(CKPT)を提案する。
論文 参考訳(メタデータ) (2023-11-29T18:51:46Z) - Towards Improving Document Understanding: An Exploration on
Text-Grounding via MLLMs [96.54224331778195]
本稿では,画像中のテキストの空間的位置を識別し,MLLMを強化したテキストグラウンド文書理解モデルTGDocを提案する。
我々は,テキスト検出,認識,スポッティングなどの命令チューニングタスクを定式化し,視覚エンコーダと大言語モデルとの密接なアライメントを容易にする。
提案手法は,複数のテキストリッチベンチマークにまたがる最先端性能を実現し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-11-22T06:46:37Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
本稿では,視覚的にリッチな文書からエンド・ツー・エンドの情報抽出フレームワークを提案する。
テキスト読み出しと情報抽出は、よく設計されたマルチモーダルコンテキストブロックを介して互いに強化することができる。
フレームワークはエンドツーエンドのトレーニング可能な方法でトレーニングでき、グローバルな最適化が達成できる。
論文 参考訳(メタデータ) (2022-07-14T08:52:07Z) - Layout-Aware Information Extraction for Document-Grounded Dialogue:
Dataset, Method and Demonstration [75.47708732473586]
視覚的にリッチな文書から構造的知識と意味的知識の両方を抽出するためのレイアウト対応文書レベル情報抽出データセット(LIE)を提案する。
LIEには製品および公式文書の4,061ページから3つの抽出タスクの62kアノテーションが含まれている。
実験の結果、レイアウトはVRDベースの抽出に不可欠であることが示され、システムデモでは、抽出された知識が、ユーザが関心を持っている答えを見つけるのに役立つことも確認されている。
論文 参考訳(メタデータ) (2022-07-14T07:59:45Z) - TRIE: End-to-End Text Reading and Information Extraction for Document
Understanding [56.1416883796342]
本稿では,統合されたエンドツーエンドのテキスト読解と情報抽出ネットワークを提案する。
テキスト読解のマルチモーダル視覚的特徴とテキスト的特徴は、情報抽出のために融合される。
提案手法は, 精度と効率の両面において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-05-27T01:47:26Z) - Natural language processing for word sense disambiguation and
information extraction [0.0]
Thesaurus を用いた Word Sense Disambiguation の新しいアプローチを提案する。
ファジィ論理に基づく文書検索手法について解説し,その応用例を示した。
この戦略は、明らかな推論のデンプスター・シェーファー理論に基づく新しい戦略の提示で締めくくられる。
論文 参考訳(メタデータ) (2020-04-05T17:13:43Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。