論文の概要: A Survey on Offline Model-Based Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2305.03360v1
- Date: Fri, 5 May 2023 08:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:49:21.584511
- Title: A Survey on Offline Model-Based Reinforcement Learning
- Title(参考訳): オフラインモデルに基づく強化学習に関する調査
- Authors: Haoyang He
- Abstract要約: モデルベースのアプローチは、オフラインの強化学習の分野でますます人気が高まっている。
本稿では,オフラインモデルに基づく強化学習における最近の研究の文献的考察について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model-based approaches are becoming increasingly popular in the field of
offline reinforcement learning, with high potential in real-world applications
due to the model's capability of thoroughly utilizing the large historical
datasets available with supervised learning techniques. This paper presents a
literature review of recent work in offline model-based reinforcement learning,
a field that utilizes model-based approaches in offline reinforcement learning.
The survey provides a brief overview of the concepts and recent developments in
both offline reinforcement learning and model-based reinforcement learning, and
discuss the intersection of the two fields. We then presents key relevant
papers in the field of offline model-based reinforcement learning and discuss
their methods, particularly their approaches in solving the issue of
distributional shift, the main problem faced by all current offline model-based
reinforcement learning methods. We further discuss key challenges faced by the
field, and suggest possible directions for future work.
- Abstract(参考訳): モデルベースアプローチは、教師付き学習技術で利用可能な巨大な歴史的データセットを徹底的に活用する能力のため、オフライン強化学習の分野で人気が高まっている。
本稿では,オフライン強化学習におけるモデルベースアプローチを活用したオフラインモデルベース強化学習の最近の研究について文献レビューを行う。
本調査では, オフライン強化学習とモデルベース強化学習の両分野における概念と最近の展開について概説し, 両分野の交点について論じる。
次に,オフラインモデルに基づく強化学習の分野における重要な関連論文を提示し,その方法,特に,現在のオフラインモデルに基づく強化学習手法が直面する主な課題である分布シフト問題を解決するためのアプローチについて論じる。
さらに,この分野が直面する課題を議論し,今後の課題への道筋を示唆する。
関連論文リスト
- Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning [37.387280102209274]
オフライン強化学習は、事前に収集されたデータセットからエージェントをトレーニング可能にすることを目的としている。
モデルベースの手法は、エージェントが学習されたダイナミックスモデルでロールアウトを介して追加の合成データを収集できるようにすることで、ソリューションを提供する。
しかし、学習したダイナミックスモデルを真のエラーフリーなダイナミックスに置き換えると、既存のモデルベースのメソッドは完全に失敗する。
本稿では, エッジ・オブ・リーチ問題に直接対処する単純で堅牢な手法であるReach-Aware Value Learning (RAVL)を提案する。
論文 参考訳(メタデータ) (2024-02-19T20:38:00Z) - Deep Generative Models for Decision-Making and Control [4.238809918521607]
この論文の2つの目的は、これらの欠点の理由を研究し、未解決問題に対する解決策を提案することである。
本稿では、ビームサーチを含む現代の生成モデリングツールボックスからの推論手法を、強化学習問題のための実行可能な計画戦略として再解釈する方法について述べる。
論文 参考訳(メタデータ) (2023-06-15T01:54:30Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
オフラインモデルに基づく強化学習では、歴史的収集データから動的モデルを学び、学習モデルと固定データセットを用いてポリシー学習を行う。
提案手法は,本手法が期待するリターンを最小限に抑えるための,反復的なオフラインMBRLフレームワークを開発する。
提案する統一型モデル政治学習フレームワークにより、我々は、広範囲の連続制御オフライン強化学習データセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2022-10-12T04:58:51Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
自己教師付き表現学習手法は、大きな注釈付きデータセットを必要とせずに強力な機能学習を提供することを目的としている。
本稿では、この活気ある領域について、鍵となる概念、アプローチの4つの主要なファミリーと関連する技術の状態、そして、データの多様性に自己監督手法を適用する方法について紹介する。
論文 参考訳(メタデータ) (2021-10-18T13:51:22Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
BrIdging Reality and Dream (BIRD) と呼ばれる新しいモデルに基づく強化学習アルゴリズムを提案する。
虚構と実軌跡の相互情報を最大化し、虚構から学んだ政策改善を実軌跡に容易に一般化できるようにする。
提案手法は, モデルベース計画のサンプル効率を向上し, 挑戦的なビジュアル制御ベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T03:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。