論文の概要: Evolution under Length Constraints for CNN Architecture design
- arxiv url: http://arxiv.org/abs/2305.03416v1
- Date: Fri, 5 May 2023 10:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:31:47.768713
- Title: Evolution under Length Constraints for CNN Architecture design
- Title(参考訳): CNNアーキテクチャ設計のための長さ制約の下での進化
- Authors: Ousmane Youme, Jean Marie Dembele, Eugene C. Ezin, Christophe Cambier
- Abstract要約: 本稿では,長さ制約下での進化的アーキテクチャを提案する。
最適な空間を見つけるための探索長戦略と、最適な空間で最適な個人を見つけるための遺伝的アルゴリズムに基づく探索アーキテクチャ戦略の2つのアルゴリズムから構成される。
Cifar-10データセットでは,1日当たり5.12%と4.6GPUの誤差率で優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, the CNN architectures designed by evolution algorithms have
proven to be competitive with handcrafted architectures designed by experts.
However, these algorithms need a lot of computational power, which is beyond
the capabilities of most researchers and engineers. To overcome this problem,
we propose an evolution architecture under length constraints. It consists of
two algorithms: a search length strategy to find an optimal space and a search
architecture strategy based on genetic algorithm to find the best individual in
the optimal space. Our algorithms reduce drastically resource cost and also
keep good performance. On the Cifar-10 dataset, our framework presents
outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to
converge to the optimal individual -22 GPU a day less than the lowest cost
automatic evolutionary algorithm in the peer competition.
- Abstract(参考訳): 近年、進化アルゴリズムによって設計されたcnnアーキテクチャは、専門家が設計した手作りアーキテクチャと競合することが証明されている。
しかし、これらのアルゴリズムには多くの計算能力が必要であり、ほとんどの研究者やエンジニアの能力を超えている。
この問題を解決するために,長さ制約下での進化的アーキテクチャを提案する。
最適な空間を見つけるための探索長戦略と、最適な空間で最適な個人を見つけるための遺伝的アルゴリズムに基づく探索アーキテクチャ戦略の2つのアルゴリズムから構成される。
我々のアルゴリズムは資源コストを大幅に削減し、優れた性能を維持する。
cifar-10データセットでは、ピアコンペティションにおける最小コストの自動進化アルゴリズムよりも1日に最適な-22 gpuに収束するエラーレートが5.12%と4.6 gpuという優れた性能を示す。
関連論文リスト
- iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - AutoSpace: Neural Architecture Search with Less Human Interference [84.42680793945007]
現在のニューラルネットワークアーキテクチャ検索(NAS)アルゴリズムは、ネットワーク構築のための検索空間を設計するための専門知識と努力を必要とします。
探索空間を最適なものに進化させる新しい微分可能な進化フレームワークであるAutoSpaceを提案する。
学習した検索空間では、最近のNASアルゴリズムの性能は、以前手作業で設計した空間に比べて大幅に改善できる。
論文 参考訳(メタデータ) (2021-03-22T13:28:56Z) - Towards Improving the Consistency, Efficiency, and Flexibility of
Differentiable Neural Architecture Search [84.4140192638394]
最も微分可能なニューラルアーキテクチャ探索法は、探索用のスーパーネットを構築し、そのサブグラフとしてターゲットネットを導出する。
本稿では,エンジンセルとトランジットセルからなるEnTranNASを紹介する。
また,検索処理の高速化を図るため,メモリや計算コストの削減も図っている。
論文 参考訳(メタデータ) (2021-01-27T12:16:47Z) - Evaluating Online and Offline Accuracy Traversal Algorithms for
k-Complete Neural Network Architectures [6.123324869194195]
本稿では,バイナリ分類のためのコンパクトニューラルネットワークアーキテクチャについて検討する。
過完全なアーキテクチャ候補を好む場合、スピードと精度の向上を調査します。
論文 参考訳(メタデータ) (2021-01-16T20:37:29Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Evolving Neural Architecture Using One Shot Model [5.188825486231326]
EvNAS(Evolving Neural Architecture using One Shot Model)と呼ばれるNAS問題に単純な遺伝的アルゴリズムを適用する新しい手法を提案する。
EvNASはプロキシデータセット、すなわちアーキテクチャを検索する。
CIFAR-10 for 4.4 GPU day on a single GPU and achieve a top-1 test error of 2.47%。
アーキテクチャ探索問題の解法における進化的手法の可能性を示す。
論文 参考訳(メタデータ) (2020-12-23T08:40:53Z) - ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse
Coding [86.40042104698792]
スパース符号問題としてニューラルアーキテクチャ探索を定式化する。
実験では、CIFAR-10の2段階法では、検索にわずか0.05GPUしか必要としない。
本手法は,CIFAR-10とImageNetの両方において,評価時間のみのコストで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-10-13T04:34:24Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
GAN (Generative Adversarial Networks) はミニマックスゲーム問題として定式化され、ジェネレータは差別者に対する対戦学習によって実際のデータ分布にアプローチしようとする。
本研究は,ネットワークアーキテクチャの観点からのモデル学習を促進することを目的として,GANに自動アーキテクチャ探索の最近の進歩を取り入れた。
我々は,αGANと呼ばれる,生成的敵ネットワークのための,完全に差別化可能な検索フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-16T13:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。