GAANet: Ghost Auto Anchor Network for Detecting Varying Size Drones in
Dark
- URL: http://arxiv.org/abs/2305.03425v1
- Date: Fri, 5 May 2023 10:46:05 GMT
- Title: GAANet: Ghost Auto Anchor Network for Detecting Varying Size Drones in
Dark
- Authors: Misha Urooj Khan, Maham Misbah, Zeeshan Kaleem, Yansha Deng, Abbas
Jamalipour
- Abstract summary: We propose an object detector called Ghost Auto Anchor Network (GAANet) for infrared (IR) images.
The detector uses a YOLOv5 core to address challenges in object detection for IR images.
GAANet has higher overall mean average precision (mAP@50), recall, and precision around 2.5%, 2.3%, and 1.4%, respectively.
- Score: 26.76350889866067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The usage of drones has tremendously increased in different sectors spanning
from military to industrial applications. Despite all the benefits they offer,
their misuse can lead to mishaps, and tackling them becomes more challenging
particularly at night due to their small size and low visibility conditions. To
overcome those limitations and improve the detection accuracy at night, we
propose an object detector called Ghost Auto Anchor Network (GAANet) for
infrared (IR) images. The detector uses a YOLOv5 core to address challenges in
object detection for IR images, such as poor accuracy and a high false alarm
rate caused by extended altitudes, poor lighting, and low image resolution. To
improve performance, we implemented auto anchor calculation, modified the
conventional convolution block to ghost-convolution, adjusted the input channel
size, and used the AdamW optimizer. To enhance the precision of multiscale tiny
object recognition, we also introduced an additional extra-small object feature
extractor and detector. Experimental results in a custom IR dataset with
multiple classes (birds, drones, planes, and helicopters) demonstrate that
GAANet shows improvement compared to state-of-the-art detectors. In comparison
to GhostNet-YOLOv5, GAANet has higher overall mean average precision (mAP@50),
recall, and precision around 2.5\%, 2.3\%, and 1.4\%, respectively. The dataset
and code for this paper are available as open source at
https://github.com/ZeeshanKaleem/GhostAutoAnchorNet.
Related papers
- SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
We propose SpirDet, a novel approach for efficient detection of infrared small targets.
We employ a new dual-branch sparse decoder to restore the feature map.
Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-02-08T05:06:14Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results.
Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets.
We extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively.
arXiv Detail & Related papers (2022-12-26T12:49:47Z) - Detecting tiny objects in aerial images: A normalized Wasserstein
distance and a new benchmark [45.10513110142015]
We propose a new evaluation metric dubbed Normalized Wasserstein Distance (NWD) and a new RanKing-based Assigning (RKA) strategy for tiny object detection.
The proposed NWD-RKA strategy can be easily embedded into all kinds of anchor-based detectors to replace the standard IoU threshold-based one.
Tested on four datasets, NWD-RKA can consistently improve tiny object detection performance by a large margin.
arXiv Detail & Related papers (2022-06-28T13:33:06Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - Small Object Detection using Deep Learning [0.28675177318965034]
The proposed system consists of a custom deep learning model Tiny YOLOv3, one of the flavors of very fast object detection model You Look Only Once (YOLO) is built and used for detection.
The proposed architecture has shown significantly better performance as compared to the previous YOLO version.
arXiv Detail & Related papers (2022-01-10T09:58:25Z) - DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images [11.45718985586972]
We propose a dense anchor-free rotated object detector (DARDet) for rotated object detection in aerial images.
Our DARDet directly predicts five parameters of rotated boxes at each foreground pixel of feature maps.
Our method achieves state-of-the-art performance on three commonly used aerial objects datasets.
arXiv Detail & Related papers (2021-10-03T15:28:14Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.