SparseFormer: Detecting Objects in HRW Shots via Sparse Vision Transformer
- URL: http://arxiv.org/abs/2502.07216v1
- Date: Tue, 11 Feb 2025 03:21:25 GMT
- Title: SparseFormer: Detecting Objects in HRW Shots via Sparse Vision Transformer
- Authors: Wenxi Li, Yuchen Guo, Jilai Zheng, Haozhe Lin, Chao Ma, Lu Fang, Xiaokang Yang,
- Abstract summary: We present a novel model-agnostic sparse vision transformer, dubbed SparseFormer, to bridge the gap of object detection between close-up and HRW shots.
The proposed SparseFormer selectively uses attentive tokens to scrutinize the sparsely distributed windows that may contain objects.
experiments on two HRW benchmarks, PANDA and DOTA-v1.0, demonstrate that the proposed SparseFormer significantly improves detection accuracy (up to 5.8%) and speed (up to 3x) over the state-of-the-art approaches.
- Score: 62.11796778482088
- License:
- Abstract: Recent years have seen an increase in the use of gigapixel-level image and video capture systems and benchmarks with high-resolution wide (HRW) shots. However, unlike close-up shots in the MS COCO dataset, the higher resolution and wider field of view raise unique challenges, such as extreme sparsity and huge scale changes, causing existing close-up detectors inaccuracy and inefficiency. In this paper, we present a novel model-agnostic sparse vision transformer, dubbed SparseFormer, to bridge the gap of object detection between close-up and HRW shots. The proposed SparseFormer selectively uses attentive tokens to scrutinize the sparsely distributed windows that may contain objects. In this way, it can jointly explore global and local attention by fusing coarse- and fine-grained features to handle huge scale changes. SparseFormer also benefits from a novel Cross-slice non-maximum suppression (C-NMS) algorithm to precisely localize objects from noisy windows and a simple yet effective multi-scale strategy to improve accuracy. Extensive experiments on two HRW benchmarks, PANDA and DOTA-v1.0, demonstrate that the proposed SparseFormer significantly improves detection accuracy (up to 5.8%) and speed (up to 3x) over the state-of-the-art approaches.
Related papers
- Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos [0.2023650687546586]
We propose a highly efficient unsupervised framework for SVMOD.
We show that our method can not only process 9 frames per second on 1024x images but also achieve foreground-art performance.
arXiv Detail & Related papers (2024-11-24T16:06:42Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization [30.317619885984005]
We introduce the well-trained vision segmentation foundation model, i.e., Segment Anything Model (SAM) in face forgery detection and localization.
Based on SAM, we propose the Detect Any Deepfakes (DADF) framework with the Multiscale Adapter.
The proposed framework seamlessly integrates end-to-end forgery localization and detection optimization.
arXiv Detail & Related papers (2023-06-29T16:25:04Z) - Adaptive Sparse Convolutional Networks with Global Context Enhancement
for Faster Object Detection on Drone Images [26.51970603200391]
This paper investigates optimizing the detection head based on the sparse convolution.
It suffers from inadequate integration of contextual information of tiny objects.
We propose a novel global context-enhanced adaptive sparse convolutional network.
arXiv Detail & Related papers (2023-03-25T14:42:50Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small
Object Detection [17.775203579232144]
We propose a novel query mechanism to accelerate the inference speed of feature-pyramid based object detectors.
The pipeline first predicts the coarse locations of small objects on low-resolution features and then computes the accurate detection results using high-resolution features.
On the popular COCO dataset, the proposed method improves the detection mAP by 1.0 and mAP-small by 2.0, and the high-resolution inference speed is improved to 3.0x on average.
arXiv Detail & Related papers (2021-03-16T15:30:20Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.