論文の概要: Interactive Acquisition of Fine-grained Visual Concepts by Exploiting
Semantics of Generic Characterizations in Discourse
- arxiv url: http://arxiv.org/abs/2305.03461v1
- Date: Fri, 5 May 2023 12:06:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:11:04.022093
- Title: Interactive Acquisition of Fine-grained Visual Concepts by Exploiting
Semantics of Generic Characterizations in Discourse
- Title(参考訳): 談話におけるジェネリックキャラクタリゼーションのセマンティクスを活用した細粒度視覚概念の対話的獲得
- Authors: Jonghyuk Park, Alex Lascarides, Subramanian Ramamoorthy
- Abstract要約: 対話型タスク学習(ITL)は、人間のユーザとの自然なインタラクションを通じて、予期せぬドメイン概念について学習する。
本稿では, ITL が課す制約を伴って, 非常に類似したオブジェクトクラスを識別する, タスクの基盤となる挑戦的なシンボルについて検討する。
- 参考スコア(独自算出の注目度): 21.357512583236808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactive Task Learning (ITL) concerns learning about unforeseen domain
concepts via natural interactions with human users. The learner faces a number
of significant constraints: learning should be online, incremental and
few-shot, as it is expected to perform tangible belief updates right after
novel words denoting unforeseen concepts are introduced. In this work, we
explore a challenging symbol grounding task--discriminating among object
classes that look very similar--within the constraints imposed by ITL. We
demonstrate empirically that more data-efficient grounding results from
exploiting the truth-conditions of the teacher's generic statements (e.g., "Xs
have attribute Z.") and their implicatures in context (e.g., as an answer to
"How are Xs and Ys different?", one infers Y lacks attribute Z).
- Abstract(参考訳): 対話型タスク学習(ITL)は、人間のユーザとの自然な対話を通じて、予期せぬドメイン概念について学ぶ。
学習者は、予期せぬ概念を示す新しい言葉が導入された直後に、具体的な信念を更新することが期待されているため、オンライン、インクリメンタル、および少数ショットであるべきである。
本稿では, ITL が課す制約を伴って, 非常に類似したオブジェクトクラスを識別する, タスクの基盤となる挑戦的なシンボルについて検討する。
我々は、教師の総称文(例えば「Xは属性Zを持っている」)の真理条件と、その文脈における不備(例えば「XとYは違うのか?」の答えとして、Yは属性Zを欠いていると推測する)を活用することによって、よりデータ効率のよい基礎となる結果が実証的に証明された。
関連論文リスト
- CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning [52.63674911541416]
FSCIL(Few-shot class-incremental Learning)は、過剰適合や忘れなど、いくつかの課題に直面している。
FSCILの独特な課題に取り組むため、ベースクラスでの表現学習に重点を置いている。
より制限された機能空間内で機能の拡散を確保することで、学習された表現が、伝達可能性と識別可能性のバランスを良くすることが可能になることが分かりました。
論文 参考訳(メタデータ) (2024-10-08T02:23:16Z) - INTRA: Interaction Relationship-aware Weakly Supervised Affordance Grounding [10.787807888885888]
インタラクティブ・リレーション・アウェアによる弱教師付きアフォーダンス・グラウンドディング(INTRA)を提案する。
従来の芸術とは異なり、INTRAはこの問題を表現学習として再認識し、異中心画像のみとの対照的な学習を通じて相互作用のユニークな特徴を識別する。
提案手法はAGD20K, IIT-AFF, CAD, UMDなどの各種データセットにおいて先行技術より優れていた。
論文 参考訳(メタデータ) (2024-09-10T04:31:51Z) - Data Science Principles for Interpretable and Explainable AI [0.7581664835990121]
解釈可能でインタラクティブな機械学習は、複雑なモデルをより透明で制御しやすいものにすることを目的としている。
本論は, この分野における文献の発達から重要な原則を合成するものである。
論文 参考訳(メタデータ) (2024-05-17T05:32:27Z) - Representing visual classification as a linear combination of words [0.0]
視覚分類タスクの言語ベースの記述子を識別するために,視覚言語モデルを用いた説明可能性戦略を提案する。
画像とテキストの間に予め訓練された結合埋め込み空間を利用することで,新しい分類課題を単語の線形結合として推定する。
その結果,ドメイン特化言語訓練の欠如にもかかわらず,結果として得られた記述子は臨床知識とほぼ一致していることが判明した。
論文 参考訳(メタデータ) (2023-11-18T02:00:20Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - Vocabulary-informed Zero-shot and Open-set Learning [128.83517181045815]
本稿では,教師付き,ゼロショット,一般化されたゼロショット,オープンセット認識の問題に対処する語彙インフォームド学習を提案する。
具体的には、(教師なしと教師なしの両方)語彙からの距離制約を取り入れた意味多様体に基づく認識のための重み付けされた最大縁フレームワークを提案する。
得られたモデルは、教師付き、ゼロショット、一般化されたゼロショット、および大きなオープンセット認識の改善を示し、Animal with AttributesとImageNetデータセットで最大310Kの語彙を持つ。
論文 参考訳(メタデータ) (2023-01-03T08:19:22Z) - Brief Introduction to Contrastive Learning Pretext Tasks for Visual
Representation [0.0]
教師なし学習手法のサブセットであるコントラスト学習を導入する。
対照的な学習の目的は、互いに近くにある同じサンプルから強化されたサンプルを埋め込んで、そうでないサンプルを押し下げることである。
我々は、最近公開されたコントラスト学習の戦略をいくつか提示し、視覚表現のためのプレテキストタスクに焦点を当てている。
論文 参考訳(メタデータ) (2022-10-06T18:54:10Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning [113.50220968583353]
ゼロショット学習のための識別的視覚特性を含むセマンティック埋め込みを発見することを提案する。
本モデルでは,画像の集合を視覚的類似性に応じて局所的な画像領域の集合に視覚的に分割する。
視覚的に接地されたセマンティック埋め込みは、様々なZSLモデルにまたがる単語埋め込みよりも、大きなマージンで性能を向上することを示した。
論文 参考訳(メタデータ) (2022-03-20T03:49:02Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
マルチタスク学習は、共有学習アルゴリズムによって複数のタスクを共同で学習する方法論として登場した。
我々は異種mtlに対処し,検出,分類,回帰問題を同時に解決する。
大規模な顔分析のための最初のフレームワークであるFaceBehaviorNetを構築し、すべての顔行動タスクを共同で学習する。
論文 参考訳(メタデータ) (2021-05-08T22:26:52Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。