Contrastive Graph Clustering in Curvature Spaces
- URL: http://arxiv.org/abs/2305.03555v1
- Date: Fri, 5 May 2023 14:04:52 GMT
- Title: Contrastive Graph Clustering in Curvature Spaces
- Authors: Li Sun, Feiyang Wang, Junda Ye, Hao Peng, Philip S. Yu
- Abstract summary: We present a novel end-to-end contrastive graph clustering model named CONGREGATE.
To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space.
We then train the graph clusters by an augmentation-free reweighted contrastive approach.
- Score: 74.03252813800334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph clustering is a longstanding research topic, and has achieved
remarkable success with the deep learning methods in recent years.
Nevertheless, we observe that several important issues largely remain open. On
the one hand, graph clustering from the geometric perspective is appealing but
has rarely been touched before, as it lacks a promising space for geometric
clustering. On the other hand, contrastive learning boosts the deep graph
clustering but usually struggles in either graph augmentation or hard sample
mining. To bridge this gap, we rethink the problem of graph clustering from
geometric perspective and, to the best of our knowledge, make the first attempt
to introduce a heterogeneous curvature space to graph clustering problem.
Correspondingly, we present a novel end-to-end contrastive graph clustering
model named CONGREGATE, addressing geometric graph clustering with Ricci
curvatures. To support geometric clustering, we construct a theoretically
grounded Heterogeneous Curvature Space where deep representations are generated
via the product of the proposed fully Riemannian graph convolutional nets.
Thereafter, we train the graph clusters by an augmentation-free reweighted
contrastive approach where we pay more attention to both hard negatives and
hard positives in our curvature space. Empirical results on real-world graphs
show that our model outperforms the state-of-the-art competitors.
Related papers
- LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - A Thorough View of Exact Inference in Graphs from the Degree-4
Sum-of-Squares Hierarchy [37.34153902687548]
We tackle the problem of exactly recovering an unknown ground-truth binary labeling of the nodes from a single corrupted observation of each edge.
We apply a hierarchy of relaxations known as the sum-of-squares hierarchy, to the problem.
We show that the solution of the dual of the relaxed problem is related to finding edge weights of the Johnson and Kneser graphs.
arXiv Detail & Related papers (2021-02-16T08:36:19Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.