論文の概要: On the Effectiveness of Equivariant Regularization for Robust Online
Continual Learning
- arxiv url: http://arxiv.org/abs/2305.03648v1
- Date: Fri, 5 May 2023 16:10:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 13:12:53.239879
- Title: On the Effectiveness of Equivariant Regularization for Robust Online
Continual Learning
- Title(参考訳): オンライン連続学習における等変正規化の有効性について
- Authors: Lorenzo Bonicelli, Matteo Boschini, Emanuele Frascaroli, Angelo
Porrello, Matteo Pennisi, Giovanni Bellitto, Simone Palazzo, Concetto
Spampinato, Simone Calderara
- Abstract要約: 継続的な学習(CL)アプローチは、このギャップを埋めるために、以前のタスクと将来のタスクの両方への知識の伝達を容易にする。
近年の研究では、多種多様な下流タスクをうまく一般化できる多目的モデルを作成することができることが示されている。
等変正則化(CLER)による連続学習を提案する。
- 参考スコア(独自算出の注目度): 17.995662644298974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans can learn incrementally, whereas neural networks forget previously
acquired information catastrophically. Continual Learning (CL) approaches seek
to bridge this gap by facilitating the transfer of knowledge to both previous
tasks (backward transfer) and future ones (forward transfer) during training.
Recent research has shown that self-supervision can produce versatile models
that can generalize well to diverse downstream tasks. However, contrastive
self-supervised learning (CSSL), a popular self-supervision technique, has
limited effectiveness in online CL (OCL). OCL only permits one iteration of the
input dataset, and CSSL's low sample efficiency hinders its use on the input
data-stream.
In this work, we propose Continual Learning via Equivariant Regularization
(CLER), an OCL approach that leverages equivariant tasks for self-supervision,
avoiding CSSL's limitations. Our method represents the first attempt at
combining equivariant knowledge with CL and can be easily integrated with
existing OCL methods. Extensive ablations shed light on how equivariant pretext
tasks affect the network's information flow and its impact on CL dynamics.
- Abstract(参考訳): 人間は漸進的に学習できるが、ニューラルネットワークは以前取得した情報を破滅的に忘れる。
継続学習(CL)アプローチは、トレーニング中に以前のタスク(後方移動)と将来のタスク(前方移動)の両方に知識の伝達を促進することによって、このギャップを埋めようとしている。
近年の研究では、多種多様な下流タスクをうまく一般化できる多目的モデルを作成することができることが示されている。
しかし、オンラインCL(OCL)では、一般的な自己監督型学習(CSSL)が限定的に有効である。
OCLは入力データセットの1イテレーションしか許可せず、CSSLの低サンプリング効率は入力データストリームでの使用を妨げる。
本研究では,CSSLの制約を回避し,同変タスクを自己超越に活用するOCLアプローチであるCLER(Continuousal Learning via Equivariant Regularization)を提案する。
本手法は,同変知識をCLと組み合わせた最初の試みであり,既存のOCL手法と容易に統合できる。
広範なアブレーションは、等価なプリテキストタスクがネットワークの情報フローとclダイナミクスに与える影響に光を当てた。
関連論文リスト
- Investigating the Pre-Training Dynamics of In-Context Learning: Task Recognition vs. Task Learning [99.05401042153214]
In-context Learning(ICL)は、タスク認識(TR)とタスク学習(TL)の2つの主要な能力に起因する可能性がある。
ICLの出現の事前学習のダイナミクスを調べることで、第一歩を踏み出す。
そこで本研究では,この2つの機能を推論時によりよく統合するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T06:37:47Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Plasticity-Optimized Complementary Networks for Unsupervised Continual
Learning [22.067640536948545]
継続的教師なし表現学習(CURL)の研究は、自己教師付き学習(SSL)技術の改善から大いに恩恵を受けている。
SSLを使った既存のCURLメソッドは、ラベルなしで高品質な表現を学習できるが、マルチタスクのデータストリームで学ぶ場合、顕著なパフォーマンス低下がある。
本稿では,従来の知識の維持の義務を解き放ち,新たなタスクに最適に集中できる専門家ネットワークを育成することを提案する。
論文 参考訳(メタデータ) (2023-09-12T09:31:34Z) - CBA: Improving Online Continual Learning via Continual Bias Adaptor [44.1816716207484]
本稿では,学習中の破滅的な分布変化に対応するために,分類器ネットワークを増強する連続バイアス適応器を提案する。
テスト段階では、CBAを削除できるため、追加のコストとメモリオーバーヘッドは発生しない。
提案手法が破滅的な分布変化を効果的に軽減できる理由を理論的に明らかにする。
論文 参考訳(メタデータ) (2023-08-14T04:03:51Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Beyond Supervised Continual Learning: a Review [69.9674326582747]
連続学習(Continuous Learning, CL)は、定常データ分布の通常の仮定を緩和または省略する機械学習のフレーバーである。
データ分布の変化は、いわゆる破滅的な忘れ(CF)効果、すなわち、過去の知識の突然の喪失を引き起こす可能性がある。
本稿では、CLを他の環境で研究する文献をレビューする。例えば、監督を減らした学習、完全に教師なしの学習、強化学習などである。
論文 参考訳(メタデータ) (2022-08-30T14:44:41Z) - Online Continual Learning with Contrastive Vision Transformer [67.72251876181497]
本稿では,オンラインCLの安定性と塑性のトレードオフを改善するために,CVT(Contrastive Vision Transformer)フレームワークを提案する。
具体的には、従来のタスクに関する情報を暗黙的にキャプチャするオンラインCLのための新しい外部アテンション機構を設計する。
学習可能な焦点に基づいて、新しいクラスと過去のクラスの間でのコントラスト学習を再バランスさせ、事前学習した表現を統合化するための焦点コントラスト損失を設計する。
論文 参考訳(メタデータ) (2022-07-24T08:51:02Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z) - Generalized Variational Continual Learning [33.194866396158005]
継続的学習の主なアプローチは、オンラインのElastic Weight Consolidationと変分連続学習である。
この修正により、オンラインEWCを制限ケースとして緩和し、2つのアプローチ間のベースラインを確保できることを示す。
VIのオーバープルーニング効果を観測するために、共通マルチタスクアーキテクチャからインスピレーションを得て、タスク固有のFiLM層によるニューラルネットワークを緩和する。
論文 参考訳(メタデータ) (2020-11-24T19:07:39Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
リカレントニューラルネットワーク(RNN)を用いた逐次データ処理における連続学習手法の有効性を評価する。
RNNに弾性重み強化などの重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重
そこで本研究では,重み付け手法の性能が処理シーケンスの長さに直接的な影響を受けず,むしろ高動作メモリ要求の影響を受けていることを示す。
論文 参考訳(メタデータ) (2020-06-22T10:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。