論文の概要: Mining bias-target Alignment from Voronoi Cells
- arxiv url: http://arxiv.org/abs/2305.03691v1
- Date: Fri, 5 May 2023 17:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 13:04:38.893080
- Title: Mining bias-target Alignment from Voronoi Cells
- Title(参考訳): ボロノイ細胞からのバイアス・ターゲットアライメント
- Authors: R\'emi Nahon and Van-Tam Nguyen and Enzo Tartaglione
- Abstract要約: 本稿では,ディープニューラルネットワークにおけるバイアスの影響を軽減するためのバイアス非依存アプローチを提案する。
従来のデバイアスのアプローチとは異なり、ターゲットクラスにおけるバイアスアライメント/ミスアライメント'を定量化するためのメトリックに依存しています。
その結果,提案手法は最先端の教師付き手法に匹敵する性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 2.66418345185993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant research efforts, deep neural networks are still
vulnerable to biases: this raises concerns about their fairness and limits
their generalization. In this paper, we propose a bias-agnostic approach to
mitigate the impact of bias in deep neural networks. Unlike traditional
debiasing approaches, we rely on a metric to quantify ``bias
alignment/misalignment'' on target classes, and use this information to
discourage the propagation of bias-target alignment information through the
network. We conduct experiments on several commonly used datasets for debiasing
and compare our method to supervised and bias-specific approaches. Our results
indicate that the proposed method achieves comparable performance to
state-of-the-art supervised approaches, although it is bias-agnostic, even in
presence of multiple biases in the same sample.
- Abstract(参考訳): 重要な研究努力にもかかわらず、ディープニューラルネットワークは依然としてバイアスに対して脆弱である。
本稿では,ディープニューラルネットワークにおけるバイアスの影響を軽減するバイアス非依存手法を提案する。
従来のデバイアスアプローチとは異なり、ターゲットクラスで `bias alignment/misalignment'' を定量化するためのメトリクスに依存しており、この情報を使用してネットワークを通じたバイアスターゲットアライメント情報の伝播を阻害している。
我々は,いくつかの一般的なデータセットを用いたデバイアス実験を行い,提案手法を教師付きおよびバイアス固有のアプローチと比較した。
提案手法は,同じサンプルに複数のバイアスが存在する場合でもバイアス非依存であるにもかかわらず,最先端の教師付きアプローチと同等の性能が得られることを示す。
関連論文リスト
- Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
ディープニューラルネットワークはデータのバイアスに敏感である。
本稿では,異常検出に基づく新しいバイアス同定手法を提案する。
合成および実際のベンチマークデータセット上で、最先端のパフォーマンスに到達する。
論文 参考訳(メタデータ) (2024-07-24T17:30:21Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - Training Debiased Subnetworks with Contrastive Weight Pruning [45.27261440157806]
我々は、未バイアスのスパイラスワークの探索において、既存のアルゴリズムの潜在的な制限を警告する理論的な洞察を示す。
そこで我々は,構造学習におけるバイアス強調サンプルの重要性を解明した。
これらの観測により,高価なグループアノテーションを使わずに非バイアス処理を探索するDCWPアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-11T08:25:47Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
ディープニューラルネットワークは、堅牢性、一般化、公正性をモデル化するのに有害なデータセットバイアスに悩まされている。
難解な未知のバイアスと戦うための2段階のデバイアス方式を提案する。
論文 参考訳(メタデータ) (2021-11-25T14:50:10Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Towards Debiasing NLU Models from Unknown Biases [70.31427277842239]
NLUモデルは、しばしばバイアスを利用して、意図したタスクを適切に学習することなく、データセット固有の高いパフォーマンスを達成する。
本稿では、モデルがバイアスを事前に知ることなく、主にバイアスを利用するのを防ぐ自己バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-25T15:49:39Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。