ChatGPT and Works Scholarly: Best Practices and Legal Pitfalls in
Writing with AI
- URL: http://arxiv.org/abs/2305.03722v1
- Date: Thu, 4 May 2023 15:38:20 GMT
- Title: ChatGPT and Works Scholarly: Best Practices and Legal Pitfalls in
Writing with AI
- Authors: Bill Tomlinson, Andrew W. Torrance, Rebecca W. Black
- Abstract summary: We offer approaches to evaluating whether or not such AI-writing violates copyright or falls within the safe harbor of fair use.
As AI is likely to grow more capable in the coming years, it is appropriate to begin integrating AI into scholarly writing activities.
- Score: 9.550238260901121
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in artificial intelligence (AI) have raised questions about
whether the use of AI is appropriate and legal in various professional
contexts. Here, we present a perspective on how scholars may approach writing
in conjunction with AI, and offer approaches to evaluating whether or not such
AI-writing violates copyright or falls within the safe harbor of fair use. We
present a set of best practices for standard of care with regard to plagiarism,
copyright, and fair use. As AI is likely to grow more capable in the coming
years, it is appropriate to begin integrating AI into scholarly writing
activities. We offer a framework for establishing sound legal and scholarly
foundations.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - AI Thinking: A framework for rethinking artificial intelligence in practice [2.9805831933488127]
A growing range of disciplines are now involved in studying, developing, and assessing the use of AI in practice.
New, interdisciplinary approaches are needed to bridge competing conceptualisations of AI in practice.
I propose a novel conceptual framework called AI Thinking, which models key decisions and considerations involved in AI use across disciplinary perspectives.
arXiv Detail & Related papers (2024-08-26T04:41:21Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Perceptions and Detection of AI Use in Manuscript Preparation for
Academic Journals [1.881901067333374]
Large Language Models (LLMs) have produced both excitement and worry about how AI will impact academic writing.
Authors of academic publications may decide to voluntarily disclose any AI tools they use to revise their manuscripts.
journals and conferences could begin mandating disclosure and/or turn to using detection services.
arXiv Detail & Related papers (2023-11-19T06:04:46Z) - Training Is Everything: Artificial Intelligence, Copyright, and Fair
Training [9.653656920225858]
Authors: Companies that use such content to train their AI engine often believe such usage should be considered "fair use"
Authors: Copyright owners, as well as their supporters, consider the incorporation of copyrighted works into training sets for AI to constitute misappropriation of owners' intellectual property.
We identify both strong and spurious arguments on both sides of this debate.
arXiv Detail & Related papers (2023-05-04T04:01:00Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Turing Test and the Practice of Law: The Role of Autonomous Levels of AI
Legal Reasoning [0.0]
This paper proposes a variant of the Turing Test that is customized for specific use in the AILR realm.
It shows how this famous gold standard of AI fulfillment can be robustly applied across the autonomous levels of AI Legal Reasoning.
arXiv Detail & Related papers (2020-08-18T04:50:23Z) - An Ontological AI-and-Law Framework for the Autonomous Levels of AI
Legal Reasoning [0.0]
A framework is proposed that seeks to identify and establish a set of robust autonomous levels articulating the realm of Artificial Intelligence and Legal Reasoning.
A set of seven levels of autonomy for AI and Legal Reasoning are meticulously proffered and mindfully discussed.
arXiv Detail & Related papers (2020-08-04T16:12:30Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.