AI Thinking: A framework for rethinking artificial intelligence in practice
- URL: http://arxiv.org/abs/2409.12922v1
- Date: Mon, 26 Aug 2024 04:41:21 GMT
- Title: AI Thinking: A framework for rethinking artificial intelligence in practice
- Authors: Denis Newman-Griffis,
- Abstract summary: A growing range of disciplines are now involved in studying, developing, and assessing the use of AI in practice.
New, interdisciplinary approaches are needed to bridge competing conceptualisations of AI in practice.
I propose a novel conceptual framework called AI Thinking, which models key decisions and considerations involved in AI use across disciplinary perspectives.
- Score: 2.9805831933488127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence is transforming the way we work with information across disciplines and practical contexts. A growing range of disciplines are now involved in studying, developing, and assessing the use of AI in practice, but these disciplines often employ conflicting understandings of what AI is and what is involved in its use. New, interdisciplinary approaches are needed to bridge competing conceptualisations of AI in practice and help shape the future of AI use. I propose a novel conceptual framework called AI Thinking, which models key decisions and considerations involved in AI use across disciplinary perspectives. The AI Thinking model addresses five practice-based competencies involved in applying AI in context: motivating AI use in information processes, formulating AI methods, assessing available tools and technologies, selecting appropriate data, and situating AI in the sociotechnical contexts it is used in. A hypothetical case study is provided to illustrate the application of AI Thinking in practice. This article situates AI Thinking in broader cross-disciplinary discourses of AI, including its connections to ongoing discussions around AI literacy and AI-driven innovation. AI Thinking can help to bridge divides between academic disciplines and diverse contexts of AI use, and to reshape the future of AI in practice.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - AI Literacy for All: Adjustable Interdisciplinary Socio-technical Curriculum [0.8879149917735942]
This paper presents a curriculum, "AI Literacy for All," to promote an interdisciplinary understanding of AI.
The paper presents four pillars of AI literacy: understanding the scope and technical dimensions of AI, learning how to interact with Gen-AI in an informed and responsible way, the socio-technical issues of ethical and responsible AI, and the social and future implications of AI.
arXiv Detail & Related papers (2024-09-02T13:13:53Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - AI for non-programmers: Applied AI in the lectures for students without programming skills [0.0]
This work presents a didactic planning script for applied AI.
The didactic planning script is based on the AI application pipeline and links AI concepts with study-relevant topics.
An example lecture series for master students in energy management shows how AI can be seamlessly integrated into discipline-specific lectures.
arXiv Detail & Related papers (2024-02-06T17:26:24Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
Recent advances in artificial intelligence (AI) hold the promise of transforming government.
It is critical that new AI systems behave in alignment with the normative expectations of society.
arXiv Detail & Related papers (2022-10-31T10:57:20Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.