NL-CS Net: Deep Learning with Non-Local Prior for Image Compressive
Sensing
- URL: http://arxiv.org/abs/2305.03899v1
- Date: Sat, 6 May 2023 02:34:28 GMT
- Title: NL-CS Net: Deep Learning with Non-Local Prior for Image Compressive
Sensing
- Authors: Shuai Bian, Shouliang Qi, Chen Li, Yudong Yao and Yueyang Teng
- Abstract summary: Deep learning has been applied to compressive sensing (CS) of images successfully in recent years.
This paper proposes a novel CS method using non-local prior which combines the interpretability of the traditional optimization methods with the speed of network-based methods, called NL-CS Net.
- Score: 7.600617428107161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has been applied to compressive sensing (CS) of images
successfully in recent years. However, existing network-based methods are often
trained as the black box, in which the lack of prior knowledge is often the
bottleneck for further performance improvement. To overcome this drawback, this
paper proposes a novel CS method using non-local prior which combines the
interpretability of the traditional optimization methods with the speed of
network-based methods, called NL-CS Net. We unroll each phase from iteration of
the augmented Lagrangian method solving non-local and sparse regularized
optimization problem by a network. NL-CS Net is composed of the up-sampling
module and the recovery module. In the up-sampling module, we use learnable
up-sampling matrix instead of a predefined one. In the recovery module,
patch-wise non-local network is employed to capture long-range feature
correspondences. Important parameters involved (e.g. sampling matrix, nonlinear
transforms, shrinkage thresholds, step size, $etc.$) are learned end-to-end,
rather than hand-crafted. Furthermore, to facilitate practical implementation,
orthogonal and binary constraints on the sampling matrix are simultaneously
adopted. Extensive experiments on natural images and magnetic resonance imaging
(MRI) demonstrate that the proposed method outperforms the state-of-the-art
methods while maintaining great interpretability and speed.
Related papers
- MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
Phase retrieval is a challenge nonlinear inverse problem in computational imaging and image processing.
We have developed PRISTA-Net, a deep unfolding network based on the first-order iterative threshold threshold algorithm (ISTA)
All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold, and step size, are learned-to-end instead of being set.
arXiv Detail & Related papers (2023-09-08T07:37:15Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - LWGNet: Learned Wirtinger Gradients for Fourier Ptychographic Phase
Retrieval [14.588976801396576]
We propose a hybrid model-driven residual network that combines the knowledge of the forward imaging system with a deep data-driven network.
Unlike other conventional unrolling techniques, LWGNet uses fewer stages while performing at par or even better than existing traditional and deep learning techniques.
This improvement in performance for low-bit depth and low-cost sensors has the potential to bring down the cost of FPM imaging setup significantly.
arXiv Detail & Related papers (2022-08-08T17:22:54Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
We propose a unifying deep unfolding multi-sampling-ratio CS-MRI framework, by merging advantages of model-based and deep learning-based methods.
Inspired by multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme.
We employ a condition module to learn adaptively step-length and noise level from compressive sampling ratio in every stage.
arXiv Detail & Related papers (2022-05-14T13:36:27Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - AMP-Net: Denoising based Deep Unfolding for Compressive Image Sensing [44.66684590557732]
We propose a deep unfolding model dubbed AMP-Net to solve the visual image CS problem.
AMP-Net has better reconstruction accuracy than other state-of-the-art methods with high reconstruction speed and a small number of network parameters.
arXiv Detail & Related papers (2020-04-21T15:04:17Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.