MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS)
- URL: http://arxiv.org/abs/2401.02884v1
- Date: Fri, 5 Jan 2024 16:25:58 GMT
- Title: MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS)
- Authors: Youhao Yu and Richard M. Dansereau
- Abstract summary: Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compressive sensing (CS) is a technique that enables the recovery of sparse
signals using fewer measurements than traditional sampling methods. To address
the computational challenges of CS reconstruction, our objective is to develop
an interpretable and concise neural network model for reconstructing natural
images using CS. We achieve this by mapping one step of the iterative shrinkage
thresholding algorithm (ISTA) to a deep network block, representing one
iteration of ISTA. To enhance learning ability and incorporate structural
diversity, we integrate aggregated residual transformations (ResNeXt) and
squeeze-and-excitation (SE) mechanisms into the ISTA block. This block serves
as a deep equilibrium layer, connected to a semi-tensor product network
(STP-Net) for convenient sampling and providing an initial reconstruction. The
resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared
to state-of-the-art network-based methods. It significantly reduces storage
requirements compared to deep unrolling methods, using only one iteration block
instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can
be iteratively used, gradually improving reconstruction accuracy while
considering computation trade-offs. Additionally, the model benefits from
multi-scale dilated convolutions, further enhancing performance.
Related papers
- Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Binarized Spectral Compressive Imaging [59.18636040850608]
Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources.
We propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet)
BiSRNet is derived by using the proposed techniques to binarize the base model.
arXiv Detail & Related papers (2023-05-17T15:36:08Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
We propose a unifying deep unfolding multi-sampling-ratio CS-MRI framework, by merging advantages of model-based and deep learning-based methods.
Inspired by multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme.
We employ a condition module to learn adaptively step-length and noise level from compressive sampling ratio in every stage.
arXiv Detail & Related papers (2022-05-14T13:36:27Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
We propose a hybrid network module, namely CCoT (Contextual Transformer) block, which can acquire the inductive bias ability of transformer simultaneously.
We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CT network.
arXiv Detail & Related papers (2022-01-15T06:30:03Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.