Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark
- URL: http://arxiv.org/abs/2305.03997v3
- Date: Mon, 17 Jun 2024 13:32:34 GMT
- Title: Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark
- Authors: Xin Lin, Jingtong Yue, Sixian Ding, Chao Ren, Lu Qi, Ming-Hsuan Yang,
- Abstract summary: Rain in the dark poses a significant challenge to deploying real-world applications such as autonomous driving, surveillance systems, and night photography.
Existing low-light enhancement or deraining methods struggle to brighten low-light conditions and remove rain simultaneously.
We introduce an end-to-end model called L$2$RIRNet, designed to manage both low-light enhancement and deraining in real-world settings.
- Score: 57.85378202032541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rain in the dark poses a significant challenge to deploying real-world applications such as autonomous driving, surveillance systems, and night photography. Existing low-light enhancement or deraining methods struggle to brighten low-light conditions and remove rain simultaneously. Additionally, cascade approaches like ``deraining followed by low-light enhancement'' or the reverse often result in problematic rain patterns or overly blurred and overexposed images. To address these challenges, we introduce an end-to-end model called L$^{2}$RIRNet, designed to manage both low-light enhancement and deraining in real-world settings. Our model features two main components: a Dual Degradation Representation Network (DDR-Net) and a Restoration Network. The DDR-Net independently learns degradation representations for luminance effects in dark areas and rain patterns in light areas, employing dual degradation loss to guide the training process. The Restoration Network restores the degraded image using a Fourier Detail Guidance (FDG) module, which leverages near-rainless detailed images, focusing on texture details in frequency and spatial domains to inform the restoration process. Furthermore, we contribute a dataset containing both synthetic and real-world low-light-rainy images. Extensive experiments demonstrate that our L$^{2}$RIRNet performs favorably against existing methods in both synthetic and complex real-world scenarios. All the code and dataset can be found in \url{https://github.com/linxin0/Low_light_rainy}.
Related papers
- MDeRainNet: An Efficient Neural Network for Rain Streak Removal from Macro-pixel Images [44.83349966064718]
We propose an efficient network, called MDeRainNet, for rain streak removal from LF images.
The proposed network adopts a multi-scale encoder-decoder architecture, which directly works on Macro-pixel images (MPIs) to improve the rain removal performance.
To improve the performance of our network on real-world rainy scenes, we propose a novel semi-supervised learning framework for our MDeRainNet.
arXiv Detail & Related papers (2024-06-15T14:47:02Z) - RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
We propose RainyScape, an unsupervised framework for reconstructing clean scenes from a collection of multi-view rainy images.
Based on the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation.
We jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss.
arXiv Detail & Related papers (2024-04-17T14:07:22Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
In nighttime driving scenes, insufficient and uneven lighting shrouds the scenes in darkness, resulting degradation of image quality and visibility.
We develop an image de-raining framework tailored for rainy nighttime driving scenes.
It aims to remove rain artifacts, enrich scene representation, and restore useful information.
arXiv Detail & Related papers (2024-02-28T09:02:33Z) - Toward Real-world Single Image Deraining: A New Benchmark and Beyond [79.5893880599847]
Single image deraining (SID) in real scenarios attracts increasing attention in recent years.
Previous real datasets suffer from low-resolution images, homogeneous rain streaks, limited background variation, and even misalignment of image pairs.
We establish a new high-quality dataset named RealRain-1k, consisting of $1,120$ high-resolution paired clean and rainy images with low- and high-density rain streaks, respectively.
arXiv Detail & Related papers (2022-06-11T12:26:59Z) - Semi-DRDNet Semi-supervised Detail-recovery Image Deraining Network via
Unpaired Contrastive Learning [59.22620253308322]
We propose a semi-supervised detail-recovery image deraining network (termed as Semi-DRDNet)
As a semi-supervised learning paradigm, Semi-DRDNet operates smoothly on both synthetic and real-world rainy data in terms of deraining robustness and detail accuracy.
arXiv Detail & Related papers (2022-04-06T12:35:27Z) - Rain Removal and Illumination Enhancement Done in One Go [1.0323063834827415]
We propose a novel entangled network, namely EMNet, which can remove the rain and enhance illumination in one go.
We present a new synthetic dataset, namely DarkRain, to boost the development of rain image restoration algorithms.
EMNet is extensively evaluated on the proposed benchmark and achieves state-of-the-art results.
arXiv Detail & Related papers (2021-08-09T08:46:15Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z) - Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network [45.78251508028359]
We propose a new semi-supervised GAN-based deraining network termed Semi-DerainGAN.
It can use both synthetic and real rainy images in a uniform network using two supervised and unsupervised processes.
To deliver better deraining results, we design a paired discriminator for distinguishing the real pairs from fake pairs.
arXiv Detail & Related papers (2020-01-23T07:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.