MDeRainNet: An Efficient Neural Network for Rain Streak Removal from Macro-pixel Images
- URL: http://arxiv.org/abs/2406.10652v1
- Date: Sat, 15 Jun 2024 14:47:02 GMT
- Title: MDeRainNet: An Efficient Neural Network for Rain Streak Removal from Macro-pixel Images
- Authors: Tao Yan, Weijiang He, Chenglong Wang, Xiangjie Zhu, Yinghui Wang, Rynson W. H. Lau,
- Abstract summary: We propose an efficient network, called MDeRainNet, for rain streak removal from LF images.
The proposed network adopts a multi-scale encoder-decoder architecture, which directly works on Macro-pixel images (MPIs) to improve the rain removal performance.
To improve the performance of our network on real-world rainy scenes, we propose a novel semi-supervised learning framework for our MDeRainNet.
- Score: 44.83349966064718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since rainy weather always degrades image quality and poses significant challenges to most computer vision-based intelligent systems, image de-raining has been a hot research topic. Fortunately, in a rainy light field (LF) image, background obscured by rain streaks in one sub-view may be visible in the other sub-views, and implicit depth information and recorded 4D structural information may benefit rain streak detection and removal. However, existing LF image rain removal methods either do not fully exploit the global correlations of 4D LF data or only utilize partial sub-views, resulting in sub-optimal rain removal performance and no-equally good quality for all de-rained sub-views. In this paper, we propose an efficient network, called MDeRainNet, for rain streak removal from LF images. The proposed network adopts a multi-scale encoder-decoder architecture, which directly works on Macro-pixel images (MPIs) to improve the rain removal performance. To fully model the global correlation between the spatial and the angular information, we propose an Extended Spatial-Angular Interaction (ESAI) module to merge them, in which a simple and effective Transformer-based Spatial-Angular Interaction Attention (SAIA) block is also proposed for modeling long-range geometric correlations and making full use of the angular information. Furthermore, to improve the generalization performance of our network on real-world rainy scenes, we propose a novel semi-supervised learning framework for our MDeRainNet, which utilizes multi-level KL loss to bridge the domain gap between features of synthetic and real-world rain streaks and introduces colored-residue image guided contrastive regularization to reconstruct rain-free images. Extensive experiments conducted on synthetic and real-world LFIs demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively.
Related papers
- Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark [57.85378202032541]
Rain in the dark poses a significant challenge to deploying real-world applications such as autonomous driving, surveillance systems, and night photography.
Existing low-light enhancement or deraining methods struggle to brighten low-light conditions and remove rain simultaneously.
We introduce an end-to-end model called L$2$RIRNet, designed to manage both low-light enhancement and deraining in real-world settings.
arXiv Detail & Related papers (2023-05-06T10:17:42Z) - Rain Removal from Light Field Images with 4D Convolution and Multi-scale
Gaussian Process [38.2995970847287]
With just a single input image, it is extremely difficult to accurately detect rain streaks, remove rain streaks, and restore rain-free images.
Compared with a single 2D image, a light field image (LFI) embeds abundant 3D structure and texture information of the target scene.
We propose a novel network, 4D-MGP-SRRNet, for rain streak removal from an LFI.
arXiv Detail & Related papers (2022-08-16T13:09:53Z) - Toward Real-world Single Image Deraining: A New Benchmark and Beyond [79.5893880599847]
Single image deraining (SID) in real scenarios attracts increasing attention in recent years.
Previous real datasets suffer from low-resolution images, homogeneous rain streaks, limited background variation, and even misalignment of image pairs.
We establish a new high-quality dataset named RealRain-1k, consisting of $1,120$ high-resolution paired clean and rainy images with low- and high-density rain streaks, respectively.
arXiv Detail & Related papers (2022-06-11T12:26:59Z) - Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for
Mixture of Rain Removal [18.04268933542476]
We propose a new SEMI-supervised Mixture Of rain REmoval Generative Adversarial Network (Semi-MoreGAN)
Semi-MoreGAN consists of four key modules: (I) a novel attentional depth prediction network to provide precise depth estimation; (ii) a context feature prediction network composed of several well-designed detailed residual blocks to produce detailed image context features; (iii) a pyramid depth-guided non-local network to effectively integrate the image context with the depth information, and produce the final rain-free images; and (iv) a comprehensive semi-supervised loss function to make the model not limited
arXiv Detail & Related papers (2022-04-28T11:35:26Z) - Structure-Preserving Deraining with Residue Channel Prior Guidance [33.41254475191555]
Single image deraining is important for many high-level computer vision tasks.
We propose a Structure-Preserving Deraining Network (SPDNet) with RCP guidance.
SPDNet directly generates high-quality rain-free images with clear and accurate structures under RCP guidance.
arXiv Detail & Related papers (2021-08-20T09:09:56Z) - Exploiting Global and Local Attentions for Heavy Rain Removal on Single
Images [35.596659286313766]
Heavy rain removal from a single image is the task of simultaneously eliminating rain streaks and fog.
Most existing rain removal methods do not generalize well for the heavy rain case.
We propose a novel network architecture consisting of three sub-networks to remove heavy rain from a single image.
arXiv Detail & Related papers (2021-04-16T14:08:27Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Multi-Scale Progressive Fusion Network for Single Image Deraining [84.0466298828417]
Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera.
Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions.
In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features.
arXiv Detail & Related papers (2020-03-24T17:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.