論文の概要: An Investigation on Word Embedding Offset Clustering as Relationship
Classification
- arxiv url: http://arxiv.org/abs/2305.04265v1
- Date: Sun, 7 May 2023 13:03:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 16:40:14.094468
- Title: An Investigation on Word Embedding Offset Clustering as Relationship
Classification
- Title(参考訳): 関係分類としての単語埋め込みオフセットクラスタリングの検討
- Authors: Didier Gohourou and Kazuhiro Kuwabara
- Abstract要約: 本研究は,一対の単語ベクトル間の関係のベクトル表現を導出する試みである。
我々は6つのプーリング戦略を使ってベクトル関係を表現している。
本研究の目的は,単語の組込みに基づく教師なし手法により,一対の単語で表される関係の性質を識別することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vector representations obtained from word embedding are the source of many
groundbreaking advances in natural language processing. They yield word
representations that are capable of capturing semantics and analogies of words
within a text corpus. This study is an investigation in an attempt to elicit a
vector representation of relationships between pairs of word vectors. We use
six pooling strategies to represent vector relationships. Different types of
clustering models are applied to analyze which one correctly groups
relationship types. Subtraction pooling coupled with a centroid based
clustering mechanism shows better performances in our experimental setup. This
work aims to provide directions for a word embedding based unsupervised method
to identify the nature of a relationship represented by a pair of words.
- Abstract(参考訳): 単語埋め込みから得られるベクトル表現は、自然言語処理における多くの画期的な進歩の源である。
テキストコーパス内の単語の意味や類似を捉えることができる単語表現を生成する。
本研究は,一対の単語ベクトル間の関係のベクトル表現を導出する試みである。
ベクトル関係を表すのに6つのプーリング戦略を用いる。
異なる種類のクラスタリングモデルを適用し、どれが正しく関係型をグループ化するかを分析する。
サブトラクションプーリングとcentroidベースのクラスタリング機構を組み合わせることで,実験的なセットアップでパフォーマンスが向上した。
本研究の目的は,単語の組込みに基づく教師なし手法により,一対の単語で表される関係の性質を識別することである。
関連論文リスト
- A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
既存の単語埋め込み手法の特徴を概説し,多くの分類タスクについて解析する。
伝統的なアプローチでは、主に単語表現を生成するために行列分解を使い、言語の意味的および構文的規則性をうまく捉えることができない。
一方、ニューラルネットワークに基づくアプローチは、言語の洗練された規則性を捕捉し、生成した単語表現における単語関係を保存することができる。
論文 参考訳(メタデータ) (2023-03-13T15:34:19Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
文埋め込みの可能性を明らかにするための新しいパラダイムとして,文埋め込み(Sentence Embedding, RSE)を提案する。
RSEは文関係のモデル化に有効で柔軟性があり、一連の最先端の埋め込み手法より優れている。
論文 参考訳(メタデータ) (2022-12-17T05:25:17Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
入力テキスト中のハイブリッドな粒度意味を統一する階層的コントラスト学習機構を提案する。
実験により,本モデルがパラフレージング,対話生成,ストーリーテリングタスクにおいて,競争ベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2022-05-26T13:26:03Z) - Deriving Word Vectors from Contextualized Language Models using
Topic-Aware Mention Selection [46.97185212695267]
本稿では,この基本戦略に従って単語表現を学習する手法を提案する。
我々は、文脈を符号化するワードベクトルの袋ではなく、文脈化された言語モデル(CLM)を利用する。
この単純な戦略は、単語埋め込みや既存のCLMベースの戦略よりも意味的特性をより予測し、高品質な単語ベクトルに繋がることを示す。
論文 参考訳(メタデータ) (2021-06-15T08:02:42Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Model Choices Influence Attributive Word Associations: A Semi-supervised
Analysis of Static Word Embeddings [0.0]
本研究は、5つの異なる静的単語埋め込みアーキテクチャの属性的単語関連を評価することを目的とする。
その結果, 組込み学習における文脈学習のフレーバーの選択は, 学習コーパスにおける単語の関連性や単語の組込み感に影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-12-14T22:27:18Z) - Multidirectional Associative Optimization of Function-Specific Word
Representations [86.87082468226387]
本稿では,関係する単語群間の関連を学習するためのニューラルネットワークフレームワークを提案する。
我々のモデルは結合関数固有の単語ベクトル空間を誘導し、例えば可塑性SVO合成のベクトルが近接して配置される。
このモデルは、共同空間においても単語群のメンバーシップに関する情報を保持し、SVO構造を前提とした複数のタスクに効果的に適用することができる。
論文 参考訳(メタデータ) (2020-05-11T17:07:20Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
分散言語表現は、様々な自然言語処理タスクにおいて、言語表現において最も広く使われている技術となっている。
ディープラーニング技術に基づく自然言語処理モデルのほとんどは、単語埋め込みと呼ばれる、すでに訓練済みの分散単語表現を使用している。
適切な単語の埋め込みを選択することは 複雑な作業です なぜなら、投影された埋め込み空間は 人間にとって直感的ではないからです
論文 参考訳(メタデータ) (2020-05-08T01:16:03Z) - Multiplex Word Embeddings for Selectional Preference Acquisition [70.33531759861111]
単語間の様々な関係に応じて容易に拡張できる多重単語埋め込みモデルを提案する。
本モデルでは,不必要なスパース性を導入することなく,関係の異なる単語を効果的に識別することができる。
論文 参考訳(メタデータ) (2020-01-09T04:47:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。