Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature
- URL: http://arxiv.org/abs/2305.04437v3
- Date: Wed, 13 Dec 2023 22:05:14 GMT
- Title: Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature
- Authors: Ross Dempsey, Igor R. Klebanov, Silviu S. Pufu, Benjamin T.
S{\o}gaard, and Bernardo Zan
- Abstract summary: We find interesting effects at $theta=pi$: along the $SU(2)$-invariant line $m_lat = m- g2 a/4$.
In this regime there is a non-perturbatively small mass gap $sim e- A g2/m2$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine the phase structure of the two-flavor Schwinger model as a
function of the $\theta$-angle and the two masses, $m_1$ and $m_2$. In
particular, we find interesting effects at $\theta=\pi$: along the
$SU(2)$-invariant line $m_1 = m_2 = m$, in the regime where $m$ is much smaller
than the charge $g$, the theory undergoes logarithmic RG flow of the
Berezinskii-Kosterlitz-Thouless type. As a result, in this regime there is a
non-perturbatively small mass gap $\sim e^{- A g^2/m^2}$. The $SU(2)$-invariant
line lies within a region of the phase diagram where the charge conjugation
symmetry is spontaneously broken and whose boundaries we determine numerically.
Our numerical results are obtained using the Hamiltonian lattice gauge
formulation that includes the mass shift $m_\text{lat} = m- g^2 a/4$ dictated
by the discrete chiral symmetry.
Related papers
- Small Circle Expansion for Adjoint QCD$_2$ with Periodic Boundary Conditions [0.0]
Supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
We generalize our results to other gauge groupsG$, for which supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
arXiv Detail & Related papers (2024-06-24T19:07:42Z) - Walking behavior induced by $\mathcal{PT}$ symmetry breaking in a non-Hermitian $\rm XY$ model with clock anisotropy [0.0]
A quantum system governed by a non-Hermitian Hamiltonian may exhibit zero temperature phase transitions driven by interactions.
We show that when the $mathcalPT$ symmetry is broken, and time-evolution becomes non-unitary, a scaling behavior similar to the Berezinskii-Kosterlitz-Thouless phase transition ensues.
arXiv Detail & Related papers (2024-04-26T12:45:16Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Truncation effects in the charge representation of the O(2) model [3.770141864638074]
We study the quantum phase transition in the charge representation with a truncation to spin $S$.
The exponential convergence of the phase-transition point is studied in both Lagrangian and Hamiltonian formulations.
arXiv Detail & Related papers (2021-04-13T16:37:21Z) - Conformal generation of an exotic rotationally invariant harmonic
oscillator [0.0]
An exotic rotationally invariant harmonic oscillator (ERIHO) is constructed by applying a non-unitary isotropic conformal bridge transformation (CBT) to a free planar particle.
We show that the ERIHO system is transformed by a peculiar unitary transformation into the anisotropic harmonic oscillator generated, in turn, by anisotropic CBT.
arXiv Detail & Related papers (2021-03-13T17:09:43Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - $\mathcal{PT}$ symmetry of a square-wave modulated two-level system [23.303857456199328]
We study a non-Hermitian two-level system with square-wave modulated dissipation and coupling.
Based on the Floquet theory, we achieve an effective Hamiltonian from which the boundaries of the $mathcalPT$ phase diagram are captured.
arXiv Detail & Related papers (2020-08-17T03:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.