Quantum simulation of the 1D Fermi-Hubbard model as a $\mathrm{Z}_2$
lattice-gauge theory
- URL: http://arxiv.org/abs/2305.04648v4
- Date: Wed, 8 Nov 2023 10:52:16 GMT
- Title: Quantum simulation of the 1D Fermi-Hubbard model as a $\mathrm{Z}_2$
lattice-gauge theory
- Authors: Uliana E. Khodaeva, Dmitry L. Kovrizhin, and Johannes Knolle
- Abstract summary: We propose a quantum circuit algorithm based on the Fermi-Hubbard model.
We show how these conservation laws can be used to implement an efficient error-mitigation scheme.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Fermi-Hubbard model is one of the central paradigms in the physics of
strongly-correlated quantum many-body systems. Here we propose a quantum
circuit algorithm based on the $\mathrm{Z}_2$ lattice gauge theory (LGT)
representation of the one-dimensional Fermi-Hubbard model, which is suitable
for implementation on current NISQ quantum computers. Within the LGT
description there is an extensive number of local conserved quantities
commuting with the Hamiltonian. We show how these conservation laws can be used
to implement an efficient error-mitigation scheme. The latter is based on a
post-selection of states for noisy quantum simulators. While the LGT
description requires a deeper quantum-circuit compared to a Jordan-Wigner (JW)
based approach, remarkably, we find that our error-correction protocol leads to
results being on-par with a standard JW implementation on noisy quantum
simulators.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Improved Hamiltonians for Quantum Simulations [8.771066413050963]
Hamiltonians with improved discretization errors will reduce quantum resources.
$mathcalO(a2)$-improved Hamiltonians for pure gauge theories.
$bbZ$ gauge theory is presented including exploratory tests using the ibm_perth device.
arXiv Detail & Related papers (2022-03-05T21:59:41Z) - Observing ground-state properties of the Fermi-Hubbard model using a
scalable algorithm on a quantum computer [0.029316801942271296]
We show an efficient, low-depth variational quantum algorithm with few parameters can reproduce important qualitative features of medium-size instances of the Fermi-Hubbard model.
We address 1x8 and 2x4 instances on 16 qubits on a superconducting quantum processor.
We observe the onset of the metal-insulator transition and Friedel oscillations in 1D, and antiferromagnetic order in both 1D and 2D.
arXiv Detail & Related papers (2021-12-03T17:14:20Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Quantum optimization within lattice gauge theory model on a quantum
simulator [7.48916170938768]
Rydberg atom arrays constitute one of the most rapidly developing arenas for quantum simulation and quantum computing.
SQA protocol can be realized easily on quantum simulation platforms such as Rydberg array D-wave annealer.
arXiv Detail & Related papers (2021-05-15T04:14:38Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Lattice Gauge Theory for a Quantum Computer [0.0]
Hamiltonian was introduced two decades ago as an alternative to Wilson's Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators.
D-theory leads naturally to quantum Qubit algorithms.
Digital quantum computing for gauge theories, the simplest example of U(1) compact QED on triangular lattice is defined.
arXiv Detail & Related papers (2020-02-24T01:16:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.