論文の概要: Improving Real-Time Bidding in Online Advertising Using Markov Decision
Processes and Machine Learning Techniques
- arxiv url: http://arxiv.org/abs/2305.04889v1
- Date: Fri, 5 May 2023 14:34:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 13:20:55.028127
- Title: Improving Real-Time Bidding in Online Advertising Using Markov Decision
Processes and Machine Learning Techniques
- Title(参考訳): マルコフ決定プロセスと機械学習技術を用いたオンライン広告におけるリアルタイム入札の改善
- Authors: Parikshit Sharma
- Abstract要約: 本稿では,ディープラーニングと強化学習を組み合わせたリアルタイム入札手法を提案する。
提案手法は,オークションの詳細と市場価格を予測するためのディープニューラルネットワークと,最適な入札価格を決定するための強化学習アルゴリズムを用いる。
その結果,提案手法は費用対効果と精度が好ましいことが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time bidding has emerged as an effective online advertising technique.
With real-time bidding, advertisers can position ads per impression, enabling
them to optimise ad campaigns by targeting specific audiences in real-time.
This paper proposes a novel method for real-time bidding that combines deep
learning and reinforcement learning techniques to enhance the efficiency and
precision of the bidding process. In particular, the proposed method employs a
deep neural network to predict auction details and market prices and a
reinforcement learning algorithm to determine the optimal bid price. The model
is trained using historical data from the iPinYou dataset and compared to
cutting-edge real-time bidding algorithms. The outcomes demonstrate that the
proposed method is preferable regarding cost-effectiveness and precision. In
addition, the study investigates the influence of various model parameters on
the performance of the proposed algorithm. It offers insights into the efficacy
of the combined deep learning and reinforcement learning approach for real-time
bidding. This study contributes to advancing techniques and offers a promising
direction for future research.
- Abstract(参考訳): リアルタイム入札は効果的なオンライン広告手法として登場した。
リアルタイム入札により、広告主はインプレッションごとに広告を配置でき、特定の視聴者をリアルタイムでターゲットすることで広告キャンペーンを最適化することができる。
本稿では,ディープラーニングと強化学習を組み合わせたリアルタイム入札手法を提案する。
特に,提案手法では,オークションの詳細と市場価格を予測するためのディープニューラルネットワークと,最適な入札価格を決定するための強化学習アルゴリズムを用いる。
このモデルは、iPinYouデータセットの履歴データを使用してトレーニングされ、最先端のリアルタイム入札アルゴリズムと比較される。
その結果,提案手法は費用対効果と精度が好ましいことが示された。
さらに,提案アルゴリズムの性能に及ぼす各種モデルパラメータの影響について検討した。
リアルタイム入札におけるディープラーニングと強化学習の併用の有効性に関する洞察を提供する。
本研究は,技術の進歩に寄与し,今後の研究に有望な方向性を提供する。
関連論文リスト
- Demystifying Advertising Campaign Bid Recommendation: A Constraint
target CPA Goal Optimization [19.857681941728597]
本稿では,広告主が望むtCPA目標を達成するための入札最適化シナリオを提案する。
我々は厳格に定式化された制約付き最適化問題を解くことで決定を下すために最適化エンジンを構築した。
提案モデルでは,広告主の過去のオークション行動に対する推測を行うことで,広告主の期待に応える入札を自然に推奨することができる。
論文 参考訳(メタデータ) (2022-12-26T07:43:26Z) - Adaptive Risk-Aware Bidding with Budget Constraint in Display
Advertising [47.14651340748015]
本稿では,強化学習による予算制約を考慮した適応型リスク対応入札アルゴリズムを提案する。
リスク・アット・バリュー(VaR)に基づく不確実性とリスク傾向の本質的関係を理論的に明らかにする。
論文 参考訳(メタデータ) (2022-12-06T18:50:09Z) - Bid Optimization using Maximum Entropy Reinforcement Learning [0.3149883354098941]
本稿では、リアルタイム入札(RTB)における強化学習(RL)を用いた広告主の入札戦略の最適化に焦点をあてる。
まず、広く受け入れられている線形入札関数を用いて、すべての印象のベース価格を計算し、RTBオークション環境から派生した可変調整係数で最適化する。
最後に、公開データセットに関する実証的研究により、提案した入札戦略がベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-10-11T06:53:53Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - Techniques Toward Optimizing Viewability in RTB Ad Campaigns Using
Reinforcement Learning [0.0]
強化学習(Reinforcement Learning, RL)は、環境との相互作用を通じて意思決定エージェントを訓練する効果的な手法である。
デジタル広告において、リアルタイム入札(Real-time bidding、RTB)は、リアルタイムオークションを通じて広告インベントリを割り当てる一般的な方法である。
論文 参考訳(メタデータ) (2021-05-21T21:56:12Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
本稿では,データスカース領域BERT知識蒸留のための拡張学習法を提案する。
提案手法が4つの異なるタスクにおける最先端のベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-01-20T13:07:39Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
リアルタイム入札(Real-Time Bidding)は、インターネット広告システムで、近年非常に人気を集めている。
本稿では、経済的な側面だけでなく、広告システムの機能にかかわる他の要因も考慮した、新たなアプローチによる代替ベッティングシステムを提案する。
論文 参考訳(メタデータ) (2020-10-22T18:36:41Z) - ProportionNet: Balancing Fairness and Revenue for Auction Design with
Deep Learning [55.76903822619047]
本研究では,強力なインセンティブ保証を備えた収益最大化オークションの設計について検討する。
我々は、高い収益と強力なインセンティブ保証を維持しつつ、公平性の懸念に対処するため、深層学習を用いてオークションを近似する手法を拡張した。
論文 参考訳(メタデータ) (2020-10-13T13:54:21Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
本稿では,これらの問題に対処するディープインテントシーケンス広告(DISA)手法を提案する。
解釈可能性の鍵となる部分は、消費者の購入意図を理解することである。
論文 参考訳(メタデータ) (2020-09-03T05:12:26Z) - Bid Prediction in Repeated Auctions with Learning [30.07778295477907]
本稿では,メインストリームの検索オークションマーケットプレースからのデータセットを用いて,繰り返しオークションにおける入札予測の問題を検討する。
提案手法は,非regret型エコノメトリを用いて入札予測を行い,ユーティリティ関数に関する非regret学習者としてプレーヤをモデル化する。
この手法は,最先端の時系列機械学習手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2020-07-26T18:14:05Z) - Online Causal Inference for Advertising in Real-Time Bidding Auctions [1.9336815376402723]
本稿では,リアルタイム入札システムを通じて購入した広告に対する因果推論を行うための新しい手法を提案する。
まず、広告の効果が最適な入札によって識別されることを示す。
マルチアームバンディット問題を解くために,適応型トンプソンサンプリング(TS)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2019-08-22T21:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。