Violation of Eigenstate Thermalization Hypothesis in Quantum Field
Theories with Higher-Form Symmetry
- URL: http://arxiv.org/abs/2305.04984v2
- Date: Tue, 3 Oct 2023 15:25:26 GMT
- Title: Violation of Eigenstate Thermalization Hypothesis in Quantum Field
Theories with Higher-Form Symmetry
- Authors: Osamu Fukushima, Ryusuke Hamazaki
- Abstract summary: We show that a higher-form symmetry in a $(d+1)$-dimensional quantum field theory leads to the breakdown of the eigenstate thermalization hypothesis.
For higher-form (i.e., $pgeq 1$) symmetry, this indicates the absence of thermalization for lattice observables that are non-local but much smaller than the whole system size.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We elucidate how the presence of higher-form symmetries affects the dynamics
of thermalization in isolated quantum systems. Under reasonable assumptions, we
analytically show that a $p$-form symmetry in a $(d+1)$-dimensional quantum
field theory leads to the breakdown of the eigenstate thermalization hypothesis
for many nontrivial $(d-p)$-dimensional observables. For higher-form (i.e.,
$p\geq 1$) symmetry, this indicates the absence of thermalization for
observables that are non-local but much smaller than the whole system size. We
numerically demonstrate this argument for the (2+1)-dimensional $\mathbb{Z}_2$
lattice gauge theory. While local observables such as the plaquette operator
thermalize, the non-local observable exciting a magnetic dipole instead relaxes
to the generalized Gibbs ensemble that takes account of the $\mathbb{Z}_2$
1-form symmetry.
Related papers
- Symmetry shapes thermodynamics of macroscopic quantum systems [0.0]
We show that the entropy of a system can be described in terms of group-theoretical quantities.
We apply our technique to generic $N$ identical interacting $d$-level quantum systems.
arXiv Detail & Related papers (2024-02-06T18:13:18Z) - Remarks on effects of projective phase on eigenstate thermalization hypothesis [0.0]
We consider $mathbbZ_NtimesmathbbZ_N$ symmetries with nontrivial projective phases.
We also perform numerical analyses for $ (1+1)$-dimensional spin chains and the $ (2+1)$-dimensional lattice gauge theory.
arXiv Detail & Related papers (2023-10-17T17:36:37Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Symmetry-resolved entanglement in critical non-Hermitian systems [0.0]
We study the symmetry-resolved entanglement in the ground state of the non-Hermitian Su-Schrieffer-Heeger chain at the critical point.
By combining bosonization techniques in the field theory and exact lattice numerical calculations, we analytically derive the charged moments of $rho_A$ and $|rho_A|$.
arXiv Detail & Related papers (2023-03-09T13:14:26Z) - Non-Abelian symmetry can increase entanglement entropy [62.997667081978825]
We quantify the effects of charges' noncommutation on Page curves.
We show analytically and numerically that the noncommuting-charge case has more entanglement.
arXiv Detail & Related papers (2022-09-28T18:00:00Z) - Non-Abelian eigenstate thermalization hypothesis [58.720142291102135]
The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries.
We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics.
arXiv Detail & Related papers (2022-06-10T18:14:18Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Quasiparticle dynamics of symmetry resolved entanglement after a quench:
the examples of conformal field theories and free fermions [0.0]
We show how the entanglement splits between the sectors of an internal local symmetry of a quantum many-body system.
We point out two physically relevant effects that should be easily observed in atomic experiments.
arXiv Detail & Related papers (2020-10-19T19:12:42Z) - Non-Hermitian extension of the Nambu--Jona-Lasinio model in 3+1 and 1+1
dimensions [68.8204255655161]
We present a non-Hermitian PT-symmetric extension of the Nambu--Jona-Lasinio model of quantum chromodynamics in 3+1 and 1+1 dimensions.
We find that in both cases, in 3+1 and in 1+1 dimensions, the inclusion of a non-Hermitian bilinear term can contribute to the generated mass.
arXiv Detail & Related papers (2020-04-08T14:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.