Remarks on effects of projective phase on eigenstate thermalization hypothesis
- URL: http://arxiv.org/abs/2310.11425v3
- Date: Mon, 8 Apr 2024 05:44:47 GMT
- Title: Remarks on effects of projective phase on eigenstate thermalization hypothesis
- Authors: Osamu Fukushima,
- Abstract summary: We consider $mathbbZ_NtimesmathbbZ_N$ symmetries with nontrivial projective phases.
We also perform numerical analyses for $ (1+1)$-dimensional spin chains and the $ (2+1)$-dimensional lattice gauge theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existence of $p$-form symmetry in $(d+1)$-dimensional quantum field is known to always lead to the breakdown of the eigenstate thermalization hypothesis (ETH) for certain $(d-p)$-dimensional operators other than symmetry operators under some assumptions. The assumptions include the mixing of symmetry sectors within a given energy shell, which is rather challenging to verify because it requires information on the eigenstates in the middle of the spectrum. We reconsider this assumption from the viewpoint of projective representations to avoid this difficulty. In the case of $\mathbb{Z}_N$ symmetries, we can circumvent the difficulty by considering $\mathbb{Z}_N\times\mathbb{Z}_N$-symmetric theories with nontrivial projective phases, and perturbing the Hamiltonian while preserving one of the $\mathbb{Z}_N$ symmetries of our interest. We also perform numerical analyses for $(1+1)$-dimensional spin chains and the $(2+1)$-dimensional $\mathbb{Z}_2$ lattice gauge theory.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Entanglement asymmetry in the critical XXZ spin chain [0.0]
We study the explicit breaking of a $SU(2)$ symmetry to a $U(1)$ subgroup employing the entanglement asymmetry.
We consider as specific model the critical XXZ spin chain, which breaks the $SU(2)$ symmetry of spin rotations except at the isotropic point.
arXiv Detail & Related papers (2024-07-08T22:16:22Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Non-standard quantum algebras and finite dimensional
$\mathcal{PT}$-symmetric systems [0.0]
We study the spectrum of a family of non-Hermitian Hamiltonians written in terms of the generators of the non-standard $U_z(sl(2, mathbb R))$ Hopf algebra deformation.
We show that this non-standard quantum algebra can be used to define an effective model Hamiltonian describing accurately the experimental spectra of three-electron hybrid qubits.
arXiv Detail & Related papers (2023-09-26T23:17:22Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Violation of Eigenstate Thermalization Hypothesis in Quantum Field
Theories with Higher-Form Symmetry [0.0]
We show that a higher-form symmetry in a $(d+1)$-dimensional quantum field theory leads to the breakdown of the eigenstate thermalization hypothesis.
For higher-form (i.e., $pgeq 1$) symmetry, this indicates the absence of thermalization for lattice observables that are non-local but much smaller than the whole system size.
arXiv Detail & Related papers (2023-05-08T18:29:38Z) - Non-perturbative constraints from symmetry and chirality on Majorana
zero modes and defect quantum numbers in (2+1)D [0.0]
In (1)D topological phases, unpaired Majorana zero modes (MZMs) can arise only if the internal symmetry group $G_f$ of the ground state splits as $G_f = G_b times mathbbZf$.
In contrast, (2+1)D topological superconductors (TSC) can host unpaired MZMs at defects even when $G_f$ is not of the form $G_b times mathbbZf$.
arXiv Detail & Related papers (2022-10-05T18:00:00Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Hidden symmetry in the biased Dicke model [0.0]
We prove for general $N$ the symmetry operators, which commute with the biased Dicke model, generate a $mathbbZ$ symmetry.
We also prove for general $N$ the symmetry operators, which commute with the Hamiltonian of the biased Dicke model, generate a $mathbbZ$ symmetry.
arXiv Detail & Related papers (2021-03-25T10:19:31Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.