Autoencoder-based prediction of ICU clinical codes
- URL: http://arxiv.org/abs/2305.04992v1
- Date: Mon, 8 May 2023 18:56:37 GMT
- Title: Autoencoder-based prediction of ICU clinical codes
- Authors: Tsvetan R. Yordanov, Ameen Abu-Hanna, Anita CJ Ravelli, Iacopo
Vagliano
- Abstract summary: We use the MIMIC-III dataset to frame the task of completing the clinical codes as a recommendation problem.
We con-sider various autoencoder approaches plus two strong baselines; item co-occurrence and Singular Value Decomposition.
Using clinical variables in addition to the incomplete codes list, improves the predictive performance of the models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Availability of diagnostic codes in Electronic Health Records (EHRs) is
crucial for patient care as well as reimbursement purposes. However, entering
them in the EHR is tedious, and some clinical codes may be overlooked. Given an
in-complete list of clinical codes, we investigate the performance of ML
methods on predicting the complete ones, and assess the added predictive value
of including other clinical patient data in this task. We used the MIMIC-III
dataset and frame the task of completing the clinical codes as a recommendation
problem. We con-sider various autoencoder approaches plus two strong baselines;
item co-occurrence and Singular Value Decomposition (SVD). Inputs are 1) a
record's known clinical codes, 2) the codes plus variables. The
co-occurrence-based ap-proach performed slightly better (F1 score=0.26, Mean
Average Precision [MAP]=0.19) than the SVD (F1=0.24, MAP=0.18). However, the
adversarial autoencoder achieved the best performance when using the codes plus
variables (F1=0.32, MAP=0.25). Adversarial autoencoders performed best in terms
of F1 and were equal to vanilla and denoising autoencoders in term of MAP.
Using clinical variables in addition to the incomplete codes list, improves the
predictive performance of the models.
Related papers
- Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.
We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - A Two-Stage Decoder for Efficient ICD Coding [10.634394331433322]
We propose a two-stage decoding mechanism to predict ICD codes.
At first, we predict the parent code and then predict the child code based on the previous prediction.
Experiments on the public MIMIC-III data set show that our model performs well in single-model settings.
arXiv Detail & Related papers (2023-05-27T17:25:13Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
We reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models.
We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation.
We present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models.
arXiv Detail & Related papers (2023-04-21T11:54:44Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
We present an explainable Read, Attend, and Code (xRAC) framework and assess two approaches, attention score-based xRAC-ATTN and model-agnostic knowledge-distillation-based xRAC-KD.
We find that the supporting evidence text highlighted by xRAC-ATTN is of higher quality than xRAC-KD whereas xRAC-KD has potential advantages in production deployment scenarios.
arXiv Detail & Related papers (2022-10-28T04:06:07Z) - Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix
Factorization [60.91600465922932]
We present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder.
Our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods.
arXiv Detail & Related papers (2022-10-23T00:32:04Z) - Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction
from Clinical Notes by Machines [0.42641920138420947]
We present our Read, Attend, and Code (RAC) model for learning the medical code assignment mappings.
RAC establishes a new state of the art (SOTA) considerably outperforming the current best Macro-F1 by 18.7%.
This new milestone marks a meaningful step toward fully autonomous medical coding (AMC) in machines.
arXiv Detail & Related papers (2021-07-10T06:01:58Z) - Medical Code Prediction from Discharge Summary: Document to Sequence
BERT using Sequence Attention [0.0]
We propose a model based on bidirectional encoder representations from transformer (BERT) using the sequence attention method for automatic ICD code assignment.
We evaluate our ap-proach on the MIMIC-III benchmark dataset.
arXiv Detail & Related papers (2021-06-15T07:35:50Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - Collaborative residual learners for automatic icd10 prediction using
prescribed medications [45.82374977939355]
We propose a novel collaborative residual learning based model to automatically predict ICD10 codes employing only prescriptions data.
We obtain multi-label classification accuracy of 0.71 and 0.57 of average precision, 0.57 and 0.38 of F1-score and 0.73 and 0.44 of accuracy in predicting principal diagnosis for inpatient and outpatient datasets respectively.
arXiv Detail & Related papers (2020-12-16T07:07:27Z) - Ensemble model for pre-discharge icd10 coding prediction [45.82374977939355]
We propose an ensemble model incorporating multiple clinical data sources for accurate code predictions.
We obtain multi-label classification accuracies of 0.73 and 0.58 for average precision, 0.56 and 0.35 for F1-scores and 0.71 and 0.4 accuracy in predicting principal diagnosis for inpatient and outpatient datasets respectively.
arXiv Detail & Related papers (2020-12-16T07:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.