TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding
- URL: http://arxiv.org/abs/2104.10652v1
- Date: Sun, 28 Mar 2021 05:34:32 GMT
- Title: TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding
- Authors: Biplob Biswas, Thai-Hoang Pham, Ping Zhang
- Abstract summary: International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
- Score: 5.273190477622007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: International Classification of Disease (ICD) coding procedure which refers
to tagging medical notes with diagnosis codes has been shown to be effective
and crucial to the billing system in medical sector. Currently, ICD codes are
assigned to a clinical note manually which is likely to cause many errors.
Moreover, training skilled coders also requires time and human resources.
Therefore, automating the ICD code determination process is an important task.
With the advancement of artificial intelligence theory and computational
hardware, machine learning approach has emerged as a suitable solution to
automate this process. In this project, we apply a transformer-based
architecture to capture the interdependence among the tokens of a document and
then use a code-wise attention mechanism to learn code-specific representations
of the entire document. Finally, they are fed to separate dense layers for
corresponding code prediction. Furthermore, to handle the imbalance in the code
frequency of clinical datasets, we employ a label distribution aware margin
(LDAM) loss function. The experimental results on the MIMIC-III dataset show
that our proposed model outperforms other baselines by a significant margin. In
particular, our best setting achieves a micro-AUC score of 0.923 compared to
0.868 of bidirectional recurrent neural networks. We also show that by using
the code-wise attention mechanism, the model can provide more insights about
its prediction, and thus it can support clinicians to make reliable decisions.
Our code is available online (https://github.com/biplob1ly/TransICD)
Related papers
- CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - Accurate and Well-Calibrated ICD Code Assignment Through Attention Over
Diverse Label Embeddings [1.201425717264024]
Manual assigning ICD codes to clinical text is time-consuming, error-prone, and expensive.
This paper describes a novel approach for automated ICD coding, combining several ideas from previous related work.
Experiments with different splits of the MIMIC-III dataset show that the proposed approach outperforms the current state-of-the-art models in ICD coding.
arXiv Detail & Related papers (2024-02-05T16:40:23Z) - A Two-Stage Decoder for Efficient ICD Coding [10.634394331433322]
We propose a two-stage decoding mechanism to predict ICD codes.
At first, we predict the parent code and then predict the child code based on the previous prediction.
Experiments on the public MIMIC-III data set show that our model performs well in single-model settings.
arXiv Detail & Related papers (2023-05-27T17:25:13Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
We reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models.
We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation.
We present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models.
arXiv Detail & Related papers (2023-04-21T11:54:44Z) - An Automatic ICD Coding Network Using Partition-Based Label Attention [2.371982686172067]
We propose a novel neural network architecture composed of two parts of encoders and two kinds of label attention layers.
The input text is segmentally encoded in the former encoder and integrated by the follower.
Our results show that our network improves the ICD coding performance based on the partition-based mechanism.
arXiv Detail & Related papers (2022-11-15T07:11:01Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
We present an explainable Read, Attend, and Code (xRAC) framework and assess two approaches, attention score-based xRAC-ATTN and model-agnostic knowledge-distillation-based xRAC-KD.
We find that the supporting evidence text highlighted by xRAC-ATTN is of higher quality than xRAC-KD whereas xRAC-KD has potential advantages in production deployment scenarios.
arXiv Detail & Related papers (2022-10-28T04:06:07Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - An Explainable CNN Approach for Medical Codes Prediction from Clinical
Text [1.7746314978241657]
We develop CNN-based methods for automatic ICD coding based on clinical text from intensive care unit (ICU) stays.
We come up with the Shallow and Wide Attention convolutional Mechanism (SWAM), which allows our model to learn local and low-level features for each label.
arXiv Detail & Related papers (2021-01-14T02:05:34Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - A Label Attention Model for ICD Coding from Clinical Text [14.910833190248319]
We propose a new label attention model for automatic ICD coding.
It can handle both the various lengths and the interdependence of the ICD code related text fragments.
Our model achieves new state-of-the-art results on three benchmark MIMIC datasets.
arXiv Detail & Related papers (2020-07-13T12:42:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.