論文の概要: Recommender Systems with Generative Retrieval
- arxiv url: http://arxiv.org/abs/2305.05065v1
- Date: Mon, 8 May 2023 21:48:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 20:00:11.011901
- Title: Recommender Systems with Generative Retrieval
- Title(参考訳): 生成的検索を伴うレコメンダシステム
- Authors: Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Keshavan,
Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost,
Maciej Kula, Ed H. Chi, Maheswaran Sathiamoorthy
- Abstract要約: 本稿では,対象候補の識別子を1フェーズで自動復号する生成検索モデルを提案する。
この新しいパラダイムでトレーニングしたリコメンデータシステムは,Amazonデータセット上の現在のSOTAモデルによって達成される結果を改善することを示す。
- 参考スコア(独自算出の注目度): 51.403911626669526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern recommender systems leverage large-scale retrieval models consisting
of two stages: training a dual-encoder model to embed queries and candidates in
the same space, followed by an Approximate Nearest Neighbor (ANN) search to
select top candidates given a query's embedding. In this paper, we propose a
new single-stage paradigm: a generative retrieval model which autoregressively
decodes the identifiers for the target candidates in one phase. To do this,
instead of assigning randomly generated atomic IDs to each item, we generate
Semantic IDs: a semantically meaningful tuple of codewords for each item that
serves as its unique identifier. We use a hierarchical method called RQ-VAE to
generate these codewords. Once we have the Semantic IDs for all the items, a
Transformer based sequence-to-sequence model is trained to predict the Semantic
ID of the next item. Since this model predicts the tuple of codewords
identifying the next item directly in an autoregressive manner, it can be
considered a generative retrieval model. We show that our recommender system
trained in this new paradigm improves the results achieved by current SOTA
models on the Amazon dataset. Moreover, we demonstrate that the
sequence-to-sequence model coupled with hierarchical Semantic IDs offers better
generalization and hence improves retrieval of cold-start items for
recommendations.
- Abstract(参考訳): クエリと候補を同じ空間に埋め込むためにデュアルエンコーダモデルをトレーニングし、クエリの埋め込みを与えられた上位候補を選択するためにANN(Approximate Nearest Neighbor)検索を行う。
本稿では,対象候補の識別子を1つのフェーズで自動復号化する生成的検索モデルを提案する。
これを実現するために、各項目にランダムに生成された原子IDを割り当てる代わりに、セマンティックIDを生成する。
我々はこれらのコードワードを生成するためにRQ-VAEと呼ばれる階層的手法を用いる。
すべての項目に対するセマンティックIDが得られたら、Transformerベースのシーケンス・ツー・シーケンスモデルを使用して、次の項目のセマンティックIDを予測する。
このモデルは,次の項目を直接自己回帰的に識別するコードワードのタプルを予測するため,生成的検索モデルとみなすことができる。
この新しいパラダイムでトレーニングしたリコメンデータシステムは、Amazonデータセット上の現在のSOTAモデルによって達成された結果を改善することを示す。
さらに,階層型セマンティックIDと組み合わされたシーケンス・ツー・シーケンス・モデルにより,より一般化し,冷間開始項目の検索を改善した。
関連論文リスト
- SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation [18.519480704213017]
SC-Recは2つの異なる項目の指標と複数のプロンプトテンプレートから多様な嗜好知識を学習する統合レコメンデータシステムである。
SC-Recはシーケンシャルレコメンデーションのための最先端の手法よりも優れており、モデルの様々な出力から補完的な知識を効果的に取り入れている。
論文 参考訳(メタデータ) (2024-08-16T11:59:01Z) - Generative Retrieval with Preference Optimization for E-commerce Search [16.78829577915103]
我々は、好みを最適化した生成検索という、Eコマース検索のための革新的なフレームワークを開発する。
生の項目のタイトルを表すためにマルチスパン識別子を使用し、クエリからタイトルを生成するタスクを、クエリからマルチスパン識別子を生成するタスクに変換する。
実験の結果,本フレームワークは実世界のデータセット上での競合性能を実現し,オンラインA/Bテストはコンバージョンゲインの改善における優位性と有効性を示した。
論文 参考訳(メタデータ) (2024-07-29T09:31:19Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
本稿では,レコメンダシステムのための適応型マルチラウンド検索パラダイムであるAda-Retrievalを提案する。
Ada-Retrievalは、ユーザー表現を反復的に洗練し、全項目領域の潜在的な候補をよりよく捉えます。
論文 参考訳(メタデータ) (2024-01-12T15:26:40Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。