論文の概要: Summarization with Precise Length Control
- arxiv url: http://arxiv.org/abs/2305.05171v1
- Date: Tue, 9 May 2023 04:45:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 13:56:29.491500
- Title: Summarization with Precise Length Control
- Title(参考訳): 正確な長さ制御による要約
- Authors: Lesly Miculicich, Yujia Xie, Song Wang, Pengcheng He
- Abstract要約: 本稿では,トークン数や文数を正確に指定した要約を生成するフレームワークを提案する。
モデルを協調訓練して長さを予測するので、最適な長さの要約を生成することができる。
- 参考スコア(独自算出の注目度): 23.688834410051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many applications of text generation such as summarization benefit from
accurately controlling the text length. Existing approaches on
length-controlled summarization either result in degraded performance or can
only control the length approximately. In this work, we present a framework to
generate summaries with precisely the specified number of tokens or sentences,
while maintaining or even improving the text quality. In addition, we jointly
train the models to predict the lengths, so our model can generate summaries
with optimal length. We evaluate the proposed framework on the CNNDM dataset
and show improved performance compared to existing methods.
- Abstract(参考訳): 要約などのテキスト生成の多くの応用は、テキストの長さを正確に制御する利点がある。
既存の長さ制御の要約に対するアプローチでは、性能が劣化するか、長さをほぼ制御できる。
本研究では,テキストの品質を維持・改善しつつ,指定されたトークン数や文数を正確に生成するフレームワークを提案する。
さらに,モデルを協調訓練して長さを予測することにより,最適な長さの要約を生成できる。
提案したフレームワークをCNNDMデータセット上で評価し,既存手法と比較して性能が向上したことを示す。
関連論文リスト
- A Novel LLM-based Two-stage Summarization Approach for Long Dialogues [9.835499880812646]
本研究では,長い文書から情報を分割・凝縮する階層的枠組みを提案する。
凝縮段階は、教師なし生成モデルを用いて凝縮データを生成する。
要約段階は、縮合されたデータ上の抽象的な要約モデルを微調整して最終結果を生成する。
論文 参考訳(メタデータ) (2024-10-09T03:42:40Z) - LongAlign: A Recipe for Long Context Alignment of Large Language Models [61.85923382850057]
LongAlignは、ロングコンテキストアライメントのための命令データ、トレーニング、評価のレシピである。
我々はSelf-Instructを使って長い命令追従データセットを構築した。
我々は、長さ分布の異なるデータの教師付き微調整を高速化するために、パッキングとソート戦略を採用した。
論文 参考訳(メタデータ) (2024-01-31T18:29:39Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
最大32,768個のトークンの効率的なコンテキストウィンドウをサポートする長文LLMを提示する。
我々のモデルは、ほとんどの通常のタスクにおいて一貫した改善を達成し、Llama 2よりも長いコンテキストタスクを大幅に改善します。
論文 参考訳(メタデータ) (2023-09-27T21:41:49Z) - LRANet: Towards Accurate and Efficient Scene Text Detection with
Low-Rank Approximation Network [63.554061288184165]
低ランク近似に基づく新しいパラメータ化テキスト形状法を提案する。
異なるテキストの輪郭間の形状相関を探索することにより, 形状表現における一貫性, コンパクト性, 単純性, 頑健性を実現する。
我々はLRANetという名前の正確で効率的な任意の形状のテキスト検出器を実装した。
論文 参考訳(メタデータ) (2023-06-27T02:03:46Z) - Hierarchical3D Adapters for Long Video-to-text Summarization [79.01926022762093]
マルチモーダル情報は、メモリ重大で完全に微調整されたテキスト要約方法よりも優れたパフォーマンスを提供する。
実験により, マルチモーダル情報は, よりメモリ量が多く, 完全に微調整されたテキスト要約法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2022-10-10T16:44:36Z) - Adapting Pretrained Text-to-Text Models for Long Text Sequences [39.62224414485055]
我々は、時系列入力に既存の事前訓練されたテキスト・ツー・テキスト・モデルを適用する。
長文QAタスク上での競合性能を実現するための長文モデルを構築した。
論文 参考訳(メタデータ) (2022-09-21T00:41:07Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - Reinforced Abstractive Summarization with Adaptive Length Controlling [12.793451906532223]
制御可能な要約、特に長さは、いくつかの実用的な応用において重要な問題である。
2段階の抽象的要約モデルを活用するために、textbfAdaptive textbfLength textbfControlling textbfOptimization (textbfALCO)法を提案する。
論文 参考訳(メタデータ) (2021-12-14T16:48:47Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMERはトランスフォーマーをベースとした事前学習モデルであり、抽出要約のための多粒度スパースアテンションを持つ。
単一文書と複数文書の要約タスクの実験から,HETFORMERがルージュF1の最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-12T22:42:31Z) - LenAtten: An Effective Length Controlling Unit For Text Summarization [5.554982420311913]
固定長要約は、予め設定された単語や文字の数で要約を生成することを目的としている。
近年の研究では、繰り返し復号器への入力として、単語の埋め込みを伴う長さ情報が組み込まれている。
我々は、このトレードオフを断ち切るために、有効長制御ユニットLenAtten(LenAtten)を提案する。
論文 参考訳(メタデータ) (2021-06-01T08:45:41Z) - Length-controllable Abstractive Summarization by Guiding with Summary
Prototype [27.094797760775297]
本稿では,新しい長さ制御可能な抽象要約モデルを提案する。
我々のモデルは2つのステップで要約を生成する。
CNN/Daily MailデータセットとNEWSROOMデータセットによる実験により、我々のモデルは、長さ制御された設定で過去のモデルよりも優れていた。
論文 参考訳(メタデータ) (2020-01-21T04:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。