Guided Focal Stack Refinement Network for Light Field Salient Object
Detection
- URL: http://arxiv.org/abs/2305.05260v1
- Date: Tue, 9 May 2023 08:32:06 GMT
- Title: Guided Focal Stack Refinement Network for Light Field Salient Object
Detection
- Authors: Bo Yuan, Yao Jiang, Keren Fu, Qijun Zhao
- Abstract summary: Light field salient object detection (SOD) is an emerging research direction attributed to the richness of light field data.
We propose to utilize multi-modal features to refine focal stacks in a guided manner, resulting in a novel guided focal stack refinement network called GFRNet.
Experimental results on four benchmark datasets demonstrate the superiority of our GFRNet model against 12 state-of-the-art models.
- Score: 20.42257631830276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Light field salient object detection (SOD) is an emerging research direction
attributed to the richness of light field data. However, most existing methods
lack effective handling of focal stacks, therefore making the latter involved
in a lot of interfering information and degrade the performance of SOD. To
address this limitation, we propose to utilize multi-modal features to refine
focal stacks in a guided manner, resulting in a novel guided focal stack
refinement network called GFRNet. To this end, we propose a guided refinement
and fusion module (GRFM) to refine focal stacks and aggregate multi-modal
features. In GRFM, all-in-focus (AiF) and depth modalities are utilized to
refine focal stacks separately, leading to two novel sub-modules for different
modalities, namely AiF-based refinement module (ARM) and depth-based refinement
module (DRM). Such refinement modules enhance structural and positional
information of salient objects in focal stacks, and are able to improve SOD
accuracy. Experimental results on four benchmark datasets demonstrate the
superiority of our GFRNet model against 12 state-of-the-art models.
Related papers
- Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target.
We propose a multi-scale direction-aware network (MSDA-Net) to integrate the high-frequency directional features of infrared small targets.
MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
arXiv Detail & Related papers (2024-06-04T07:23:09Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - Depth-Cooperated Trimodal Network for Video Salient Object Detection [13.727763221832532]
We propose a depth-operated triOD network called DCTNet for video salient object detection (VS)
To this end, we first generate depth from RGB frames, and then propose an approach to treat the three modalities unequally.
We also introduce a refinement fusion module (RFM) to suppress noises in each modality and select useful information dynamically for further feature refinement.
arXiv Detail & Related papers (2022-02-12T13:04:16Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Progressive Multi-scale Fusion Network for RGB-D Salient Object
Detection [9.099589602551575]
We discuss about the advantages of the so-called progressive multi-scale fusion method and propose a mask-guided feature aggregation module.
The proposed framework can effectively combine the two features of different modalities and alleviate the impact of erroneous depth features.
We further introduce a mask-guided refinement module(MGRM) to complement the high-level semantic features and reduce the irrelevant features from multi-scale fusion.
arXiv Detail & Related papers (2021-06-07T20:02:39Z) - Middle-level Fusion for Lightweight RGB-D Salient Object Detection [81.43951906434175]
A novel lightweight RGB-D SOD model is presented in this paper.
With IMFF and L modules incorporated in the middle-level fusion structure, our proposed model has only 3.9M parameters and runs at 33 FPS.
The experimental results on several benchmark datasets verify the effectiveness and superiority of the proposed method over some state-of-the-art methods.
arXiv Detail & Related papers (2021-04-23T11:37:15Z) - Dynamic Fusion Network For Light Field Depth Estimation [32.64928379844675]
We propose a dynamically multi modal learning strategy which incorporates RGB data and the focal stack in our framework.
The success of our method is demonstrated by achieving the state of the art performance on two datasets.
arXiv Detail & Related papers (2021-04-13T06:45:11Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
We propose an end-to-end Dense Attention Fluid Network (DAFNet) for salient object detection in optical remote sensing images (RSIs)
A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships.
We construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations.
arXiv Detail & Related papers (2020-11-26T06:14:10Z) - MFIF-GAN: A New Generative Adversarial Network for Multi-Focus Image
Fusion [29.405149234582623]
Multi-Focus Image Fusion (MFIF) is a promising technique to obtain all-in-focus images.
One of the research trends of MFIF is to avoid the defocus spread effect (DSE) around the focus/defocus boundary (FDB)
We propose a network termed MFIF-GAN to generate focus maps in which the foreground region are correctly larger than the corresponding objects.
arXiv Detail & Related papers (2020-09-21T09:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.