Dialogue Planning via Brownian Bridge Stochastic Process for
Goal-directed Proactive Dialogue
- URL: http://arxiv.org/abs/2305.05290v1
- Date: Tue, 9 May 2023 09:28:23 GMT
- Title: Dialogue Planning via Brownian Bridge Stochastic Process for
Goal-directed Proactive Dialogue
- Authors: Jian Wang, Dongding Lin, Wenjie Li
- Abstract summary: Goal-directed dialogue systems aim to proactively reach a pre-determined target through multi-turn conversations.
Key to achieving this task lies in planning dialogue paths that smoothly and coherently direct conversations towards the target.
We propose a coherent dialogue planning approach that uses a process to model the temporal dynamics of dialogue paths.
- Score: 9.99763097964222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Goal-directed dialogue systems aim to proactively reach a pre-determined
target through multi-turn conversations. The key to achieving this task lies in
planning dialogue paths that smoothly and coherently direct conversations
towards the target. However, this is a challenging and under-explored task. In
this work, we propose a coherent dialogue planning approach that uses a
stochastic process to model the temporal dynamics of dialogue paths. We define
a latent space that captures the coherence of goal-directed behavior using a
Brownian bridge process, which allows us to incorporate user feedback flexibly
in dialogue planning. Based on the derived latent trajectories, we generate
dialogue paths explicitly using pre-trained language models. We finally employ
these paths as natural language prompts to guide dialogue generation. Our
experiments show that our approach generates more coherent utterances and
achieves the goal with a higher success rate.
Related papers
- Unsupervised Extraction of Dialogue Policies from Conversations [3.102576158218633]
We show how Large Language Models can be instrumental in extracting dialogue policies from datasets.
We then propose a novel method for generating dialogue policies utilizing a controllable and interpretable graph-based methodology.
arXiv Detail & Related papers (2024-06-21T14:57:25Z) - Dialogue Action Tokens: Steering Language Models in Goal-Directed Dialogue with a Multi-Turn Planner [51.77263363285369]
We present an approach called Dialogue Action Tokens that adapts language model agents to plan goal-directed dialogues.
The core idea is to treat each utterance as an action, thereby converting dialogues into games where existing approaches such as reinforcement learning can be applied.
arXiv Detail & Related papers (2024-06-17T18:01:32Z) - Target-constrained Bidirectional Planning for Generation of
Target-oriented Proactive Dialogue [11.338393954848632]
We focus on effective dialogue planning for target-oriented dialogue generation.
Inspired by decision-making theories in cognitive science, we propose a novel target-constrained bidirectional planning approach.
Our algorithms significantly outperform various baseline models.
arXiv Detail & Related papers (2024-03-10T02:14:24Z) - Plug-and-Play Policy Planner for Large Language Model Powered Dialogue
Agents [121.46051697742608]
We introduce a new dialogue policy planning paradigm to strategize dialogue problems with a tunable language model plug-in named PPDPP.
Specifically, we develop a novel training framework to facilitate supervised fine-tuning over available human-annotated data.
PPDPP consistently and substantially outperforms existing approaches on three different proactive dialogue applications.
arXiv Detail & Related papers (2023-11-01T03:20:16Z) - Dialog-to-Actions: Building Task-Oriented Dialogue System via
Action-Level Generation [7.110201160927713]
We propose a task-oriented dialogue system via action-level generation.
Specifically, we first construct dialogue actions from large-scale dialogues and represent each natural language (NL) response as a sequence of dialogue actions.
We train a Sequence-to-Sequence model which takes the dialogue history as input and outputs sequence of dialogue actions.
arXiv Detail & Related papers (2023-04-03T11:09:20Z) - Follow Me: Conversation Planning for Target-driven Recommendation
Dialogue Systems [9.99763097964222]
Recommendation dialogue systems aim to build social bonds with users and provide high-quality recommendations.
This paper pushes forward towards a promising paradigm called target-driven recommendation dialogue systems.
We focus on how to naturally lead users to accept the designated targets gradually through conversations.
arXiv Detail & Related papers (2022-08-06T13:23:42Z) - Target-Guided Dialogue Response Generation Using Commonsense and Data
Augmentation [32.764356638437214]
We introduce a new technique for target-guided response generation.
We also propose techniques to re-purpose existing dialogue datasets for target-guided generation.
Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
arXiv Detail & Related papers (2022-05-19T04:01:40Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
We propose a novel framework of Reasoning Paths in Dialogue Context (PDC)
PDC model discovers information flows among dialogue turns through a semantic graph constructed based on lexical components in each question and answer.
Our model sequentially processes both visual and textual information through this reasoning path and the propagated features are used to generate the answer.
arXiv Detail & Related papers (2021-03-01T07:39:26Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z) - Dynamic Knowledge Routing Network For Target-Guided Open-Domain
Conversation [79.7781436501706]
We propose a structured approach that controls the intended content of system responses by introducing coarse-grained keywords.
We also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate.
arXiv Detail & Related papers (2020-02-04T09:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.