Follow Me: Conversation Planning for Target-driven Recommendation
Dialogue Systems
- URL: http://arxiv.org/abs/2208.03516v1
- Date: Sat, 6 Aug 2022 13:23:42 GMT
- Title: Follow Me: Conversation Planning for Target-driven Recommendation
Dialogue Systems
- Authors: Jian Wang, Dongding Lin, Wenjie Li
- Abstract summary: Recommendation dialogue systems aim to build social bonds with users and provide high-quality recommendations.
This paper pushes forward towards a promising paradigm called target-driven recommendation dialogue systems.
We focus on how to naturally lead users to accept the designated targets gradually through conversations.
- Score: 9.99763097964222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation dialogue systems aim to build social bonds with users and
provide high-quality recommendations. This paper pushes forward towards a
promising paradigm called target-driven recommendation dialogue systems, which
is highly desired yet under-explored. We focus on how to naturally lead users
to accept the designated targets gradually through conversations. To this end,
we propose a Target-driven Conversation Planning (TCP) framework to plan a
sequence of dialogue actions and topics, driving the system to transit between
different conversation stages proactively. We then apply our TCP with planned
content to guide dialogue generation. Experimental results show that our
conversation planning significantly improves the performance of target-driven
recommendation dialogue systems.
Related papers
- Target-constrained Bidirectional Planning for Generation of
Target-oriented Proactive Dialogue [11.338393954848632]
We focus on effective dialogue planning for target-oriented dialogue generation.
Inspired by decision-making theories in cognitive science, we propose a novel target-constrained bidirectional planning approach.
Our algorithms significantly outperform various baseline models.
arXiv Detail & Related papers (2024-03-10T02:14:24Z) - Let's Negotiate! A Survey of Negotiation Dialogue Systems [56.01648785030208]
Negotiation is a crucial ability in human communication.
Recent interest in negotiation dialogue systems aims to create intelligent agents that can assist people in resolving conflicts or reaching agreements.
arXiv Detail & Related papers (2024-02-02T02:12:46Z) - Plug-and-Play Policy Planner for Large Language Model Powered Dialogue
Agents [121.46051697742608]
We introduce a new dialogue policy planning paradigm to strategize dialogue problems with a tunable language model plug-in named PPDPP.
Specifically, we develop a novel training framework to facilitate supervised fine-tuning over available human-annotated data.
PPDPP consistently and substantially outperforms existing approaches on three different proactive dialogue applications.
arXiv Detail & Related papers (2023-11-01T03:20:16Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
This work focuses on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues.
To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme.
arXiv Detail & Related papers (2023-05-23T02:49:35Z) - Dialogue Planning via Brownian Bridge Stochastic Process for
Goal-directed Proactive Dialogue [9.99763097964222]
Goal-directed dialogue systems aim to proactively reach a pre-determined target through multi-turn conversations.
Key to achieving this task lies in planning dialogue paths that smoothly and coherently direct conversations towards the target.
We propose a coherent dialogue planning approach that uses a process to model the temporal dynamics of dialogue paths.
arXiv Detail & Related papers (2023-05-09T09:28:23Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
We provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues.
We discuss challenges that meet the real-world application needs but require a greater research focus in the future.
arXiv Detail & Related papers (2023-05-04T11:38:49Z) - Target-Guided Dialogue Response Generation Using Commonsense and Data
Augmentation [32.764356638437214]
We introduce a new technique for target-guided response generation.
We also propose techniques to re-purpose existing dialogue datasets for target-guided generation.
Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
arXiv Detail & Related papers (2022-05-19T04:01:40Z) - Conversational Norms for Human-Robot Dialogues [0.32228025627337864]
This paper describes a recently initiated research project aiming at supporting development of computerised dialogue systems that handle breaches of conversational norms.
Our approach is to model dialogue and norms with co-operating distributed grammar systems (CDGSs)
arXiv Detail & Related papers (2021-03-02T13:28:18Z) - INSPIRED: Toward Sociable Recommendation Dialog Systems [51.1063713492648]
In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner.
We present a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations.
Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations.
arXiv Detail & Related papers (2020-09-29T21:03:44Z) - Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue
Systems [18.375851346138155]
Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response.
We propose using a dialogue policy to plan the content and style of target responses in the form of an action plan.
We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation.
arXiv Detail & Related papers (2020-05-26T06:09:57Z) - Towards Conversational Recommendation over Multi-Type Dialogs [78.52354759386296]
We propose a new task of conversational recommendation over multi-type dialogs, where the bots can proactively and naturally lead a conversation from a non-recommendation dialog to a recommendation dialog.
To facilitate the study of this task, we create a human-to-human Chinese dialog dataset emphDuRecDial (about 10k dialogs, 156k utterances)
In each dialog, the recommender proactively leads a multi-type dialog to approach recommendation targets and then makes multiple recommendations with rich interaction behavior.
arXiv Detail & Related papers (2020-05-08T11:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.