Application of Artificial Intelligence in the Classification of
Microscopical Starch Images for Drug Formulation
- URL: http://arxiv.org/abs/2305.05321v1
- Date: Tue, 9 May 2023 10:16:02 GMT
- Title: Application of Artificial Intelligence in the Classification of
Microscopical Starch Images for Drug Formulation
- Authors: Marvellous Ajala, Blessing Oko, David Oba-Fidelis, Joycelyn Iyasele,
Joy I. Odimegwu
- Abstract summary: Starches are important energy sources found in plants with many uses in the pharmaceutical industry.
In this work, we applied artificial intelligence techniques (using transfer learning and deep convolution neural network CNNs) to microscopical images obtained from 9 starch samples of different botanical sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Starches are important energy sources found in plants with many uses in the
pharmaceutical industry such as binders, disintegrants, bulking agents in drugs
and thus require very careful physicochemical analysis for proper
identification and verification which includes microscopy. In this work, we
applied artificial intelligence techniques (using transfer learning and deep
convolution neural network CNNs to microscopical images obtained from 9 starch
samples of different botanical sources. Our approach obtained an accuracy of
61% when the machine learning model was pretrained on microscopic images from
MicroNet dataset. However the accuracy jumped to 81% for model pretrained on
random day to day images obtained from Imagenet dataset. The model pretrained
on the imagenet dataset also showed a better precision, recall and f1 score
than that pretrained on the imagenet dataset.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Automated Segmentation and Analysis of Microscopy Images of Laser Powder Bed Fusion Melt Tracks [0.0]
We present an image segmentation neural network that automatically identifies and measures melt track dimensions from a cross-section image.
We use a U-Net architecture to train on a data set of 62 pre-labelled images obtained from different labs, machines, and materials coupled with image augmentation.
arXiv Detail & Related papers (2024-09-26T22:44:00Z) - High-Throughput Phenotyping using Computer Vision and Machine Learning [0.0]
We used a dataset provided by Oak Ridge National Laboratory with 1,672 images of Populus Trichocarpa with white labels displaying treatment.
Optical character recognition (OCR) was used to read these labels on the plants.
Machine learning models were used to predict treatment based on those classifications, and analyzed encoded EXIF tags were used for the purpose of finding leaf size and correlations between phenotypes.
arXiv Detail & Related papers (2024-07-08T19:46:31Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in
Populus trichocarpa [1.9089478605920305]
This work is designed to provide the plant phenotyping community with (i) methods for fast and accurate image-based feature extraction that require minimal training data, and (ii) a new population-scale data set, including 68 different leaf phenotypes, for domain scientists and machine learning researchers.
All of the few-shot learning code, data, and results are made publicly available.
arXiv Detail & Related papers (2023-01-24T23:40:01Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Automatic identification of fossils and abiotic grains during carbonate
microfacies analysis using deep convolutional neural networks [1.520387509697271]
Petrographic analysis based on microfacies identification in thin sections is widely used in sedimentary environment interpretation and paleoecological reconstruction.
Distinguishing the morphological and microstructural diversity of skeletal fragments requires extensive prior knowledge of fossil morphotypes in microfacies.
arXiv Detail & Related papers (2020-09-24T00:58:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.