Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading
- URL: http://arxiv.org/abs/2410.00779v1
- Date: Tue, 1 Oct 2024 15:19:16 GMT
- Title: Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading
- Authors: Mostafa Hajighasemloua, Samad Sheikhaei, Hamid Soltanian-Zadeha,
- Abstract summary: This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence algorithms have demonstrated their image classification and segmentation ability in the past decade. However, artificial intelligence algorithms perform less for actual clinical data than those used for simulations. This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation, which can achieve sufficient generalization and robustness. The self-attention mechanism and tokens employed in ViT, besides the local-to-global learning approach used in the hybrid model, enable the proposed algorithm to extract a high-dimensional and high-quality feature space from images. To demonstrate the proposed neural network's capability in classifying and extracting feature spaces from medical images, we use it on a dataset of Diabetic Retinopathy images, specifically the EyePACS dataset. This dataset is more complex structurally and challenging regarding damaged areas than other medical images. For the first time in this study, self-supervised learning and knowledge distillation are used to classify this dataset. In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset. Unlike many studies, we have not removed any images from the dataset. Finally, our algorithm achieved an accuracy of 79.1% in the linear classifier and 74.36% in the k-NN algorithm for multiclass classification. Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
Related papers
- Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
This study introduces a novel and accurate approach to breast cancer classification using histopathology images.
It systematically compares leading Convolutional Neural Network (CNN) models across varying image datasets.
Our findings establish the settings required to achieve exceptional classification accuracy for standalone CNN models.
arXiv Detail & Related papers (2024-10-04T11:31:43Z) - A Multi-Dataset Classification-Based Deep Learning Framework for Electronic Health Records and Predictive Analysis in Healthcare [0.5999777817331317]
This study proposes a novel deep learning predictive analysis framework for classifying multiple datasets.
A hybrid deep learning model combining Residual Networks and Artificial Neural Networks is proposed to detect acute and chronic diseases.
Rigorous experimentation and evaluation resulted in high accuracies of 93%, 99%, and 95% for retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions, respectively.
arXiv Detail & Related papers (2024-09-25T08:13:39Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Self supervised contrastive learning for digital histopathology [0.0]
We use a contrastive self-supervised learning method called SimCLR that achieved state-of-the-art results on natural-scene images.
We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features.
Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks.
arXiv Detail & Related papers (2020-11-27T19:18:45Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.