Experimentally demonstrating indefinite causal order algorithms to solve
the generalized Deutsch's problem
- URL: http://arxiv.org/abs/2305.05416v2
- Date: Wed, 10 May 2023 02:54:34 GMT
- Title: Experimentally demonstrating indefinite causal order algorithms to solve
the generalized Deutsch's problem
- Authors: Wen-Qiang Liu, Zhe Meng, Bo-Wen Song, Jian Li, Qing-Yuan Wu, Xiao-Xiao
Chen, Jin-Yang Hong, An-Ning Zhang, and Zhang-qi Yin
- Abstract summary: Deutsch's algorithm is the first quantum algorithm to show the advantage over the classical algorithm.
We propose a new quantum algorithm with indefinite causal order to solve this problem.
- Score: 4.555392897705548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deutsch's algorithm is the first quantum algorithm to show the advantage over
the classical algorithm. Here we generalize Deutsch's problem to $n$ functions
and propose a new quantum algorithm with indefinite causal order to solve this
problem. The new algorithm not only reduces the number of queries to the
black-box by half over the classical algorithm, but also significantly reduces
the number of required quantum gates over the Deutsch's algorithm. We
experimentally demonstrate the algorithm in a stable Sagnac loop interferometer
with common path, which overcomes the obstacles of both phase instability and
low fidelity of Mach-Zehnder interferometer. The experimental results have
shown both an ultra-high and robust success probability $\sim 99.7\%$. Our work
opens up a new path towards solving the practical problems with indefinite
casual order quantum circuits.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Invex Programs: First Order Algorithms and Their Convergence [66.40124280146863]
Invex programs are a special kind of non-constrained problems which attain global minima at every stationary point.
We propose new first-order algorithms to solve general convergence rates in beyondvex problems.
Our proposed algorithm is the first algorithm to solve constrained invex programs.
arXiv Detail & Related papers (2023-07-10T10:11:01Z) - Quantum optimization algorithm based on multistep quantum computation [0.0]
We present a quantum algorithm for finding the minimum of a function based on multistep quantum computation.
In this algorithm, the dimension of the search space of the problem can be reduced exponentially step by step.
We have tested the algorithm for some continuous test functions.
arXiv Detail & Related papers (2023-06-30T01:58:23Z) - Making the cut: two methods for breaking down a quantum algorithm [0.0]
It remains a major challenge to find quantum algorithms that may reach computational advantage in the present era of noisy, small-scale quantum hardware.
We identify and characterize two methods of breaking down'' quantum algorithms into rounds of lower (query) depth.
We show that for the first problem parallelization offers the best performance, while for the second is the better choice.
arXiv Detail & Related papers (2023-05-17T18:00:06Z) - An adaptive Bayesian quantum algorithm for phase estimation [0.0]
We present a coherence-based phase-estimation algorithm which can achieve the optimal quadratic scaling in the mean absolute error and the mean squared error.
In the presence of noise, our algorithm produces errors that approach the theoretical lower bound.
arXiv Detail & Related papers (2023-03-02T19:00:01Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
We introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA)
The approximate solution of the max-cut problem can be obtained with probability close to 1.
We compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.
arXiv Detail & Related papers (2021-10-15T11:19:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.