Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms
- URL: http://arxiv.org/abs/2309.13110v2
- Date: Fri, 3 Nov 2023 20:53:51 GMT
- Title: Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms
- Authors: Lucas T. Brady, Stuart Hadfield
- Abstract summary: We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum algorithms have been widely studied in the context of combinatorial
optimization problems. While this endeavor can often analytically and
practically achieve quadratic speedups, theoretical and numeric studies remain
limited, especially compared to the study of classical algorithms. We propose
and study a new class of hybrid approaches to quantum optimization, termed
Iterative Quantum Algorithms, which in particular generalizes the Recursive
Quantum Approximate Optimization Algorithm. This paradigm can incorporate hard
problem constraints, which we demonstrate by considering the Maximum
Independent Set (MIS) problem. We show that, for QAOA with depth $p=1$, this
algorithm performs exactly the same operations and selections as the classical
greedy algorithm for MIS. We then turn to deeper $p>1$ circuits and other ways
to modify the quantum algorithm that can no longer be easily mimicked by
classical algorithms, and empirically confirm improved performance. Our work
demonstrates the practical importance of incorporating proven classical
techniques into more effective hybrid quantum-classical algorithms.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Hybrid Quantum-Classical Algorithms [0.0]
This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms.
Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry.
arXiv Detail & Related papers (2024-06-18T07:54:05Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
We introduce an iterative quantum optimization algorithm to solve optimization problems.
We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits.
We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement.
arXiv Detail & Related papers (2023-03-09T18:59:37Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Implementable Hybrid Quantum Ant Colony Optimization Algorithm [0.0]
We propose a new hybrid quantum algorithm to produce approximate solutions for NP-hard problems.
We develop an improved algorithm that can be truly implemented on near-term quantum computers.
The benchmarks made by simulating the noiseless quantum circuit and the experiments made on IBM quantum computers show the validity of the algorithm.
arXiv Detail & Related papers (2021-07-08T13:50:51Z) - To quantum or not to quantum: towards algorithm selection in near-term
quantum optimization [0.0]
We study the problem of detecting problem instances of where QAOA is most likely to yield an advantage over a conventional algorithm.
We achieve cross-validated accuracy well over 96%, which would yield a substantial practical advantage.
arXiv Detail & Related papers (2020-01-22T20:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.