Localization of Ultra-dense Emitters with Neural Networks
- URL: http://arxiv.org/abs/2305.05542v1
- Date: Sun, 7 May 2023 19:20:42 GMT
- Title: Localization of Ultra-dense Emitters with Neural Networks
- Authors: Armin Abdehkakha and Craig Snoeyink
- Abstract summary: We present a deep convolutional neural network called LUENN which utilizes a unique architecture that rejects the isolated emitter assumption.
It can smoothly accommodate emitters that range from completely isolated to co-located.
This architecture, alongside an accurate estimator of location uncertainty, extends the range of usable emitter densities by a factor of 6 to over 31 emitters per micrometer-squared with reduced penalty to localization precision and improved temporal resolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-Molecule Localization Microscopy (SMLM) has expanded our ability to
visualize subcellular structures but is limited in its temporal resolution.
Increasing emitter density will improve temporal resolution, but current
analysis algorithms struggle as emitter images significantly overlap. Here we
present a deep convolutional neural network called LUENN which utilizes a
unique architecture that rejects the isolated emitter assumption; it can
smoothly accommodate emitters that range from completely isolated to
co-located. This architecture, alongside an accurate estimator of location
uncertainty, extends the range of usable emitter densities by a factor of 6 to
over 31 emitters per micrometer-squared with reduced penalty to localization
precision and improved temporal resolution. Apart from providing uncertainty
estimation, the algorithm improves usability in laboratories by reducing
imaging times and easing requirements for successful experiments.
Related papers
- Event-Stream Super Resolution using Sigma-Delta Neural Network [0.10923877073891444]
Event cameras present unique challenges due to their low resolution and sparse, asynchronous nature of the data they collect.
Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras.
Research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs)
arXiv Detail & Related papers (2024-08-13T15:25:18Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Fast light-field 3D microscopy with out-of-distribution detection and
adaptation through Conditional Normalizing Flows [16.928404625892625]
Real-time 3D fluorescence microscopy is crucial for the analysis of live organisms.
We propose a novel architecture to perform fast 3D reconstructions of live immobilized zebrafish neural activity.
arXiv Detail & Related papers (2023-06-10T10:42:49Z) - An unsupervised deep learning algorithm for single-site reconstruction
in quantum gas microscopes [47.187609203210705]
In quantum gas microscopy experiments, reconstructing the site-resolved lattice occupation with high fidelity is essential for the accurate extraction of physical observables.
Here, we present a novel algorithm based on deep convolutional neural networks to reconstruct the site-resolved lattice occupation with high fidelity.
arXiv Detail & Related papers (2022-12-22T18:57:27Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
Deep learning can be used to augment scientific data based on coarse-grained simulations.
We propose a rich and efficient temporal super-resolution framework inspired by physics-informed learning.
Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms.
arXiv Detail & Related papers (2022-08-02T13:57:35Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
We propose SSN-Fitting to reconstruct a better signed distance field.
SSN-Fitting consists of a semi-signed supervision and a loss-based region sampling strategy.
We conduct experiments to demonstrate that SSN-Fitting achieves state-of-the-art performance under different settings.
arXiv Detail & Related papers (2022-06-14T09:40:17Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Deep Unfolding of Iteratively Reweighted ADMM for Wireless RF Sensing [22.467957268653077]
We address the detection of material defects inside a layered material structure using compressive sensing based multiple-output (MIMO) wireless radar.
In many scenarios, the number of defects challenging the layered structure can be modeled as a low-rank structure.
arXiv Detail & Related papers (2021-06-07T15:00:33Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
This work presents an unsupervised learning framework that is able to predict at-scale depth maps and egomotion.
Our results demonstrate strong performance when compared to the current state-of-the-art on multiple sequences of the KITTI driving dataset.
arXiv Detail & Related papers (2020-11-02T22:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.