論文の概要: An Algorithm For Adversary Aware Decentralized Networked MARL
- arxiv url: http://arxiv.org/abs/2305.05573v2
- Date: Thu, 15 Jun 2023 18:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 17:15:31.743366
- Title: An Algorithm For Adversary Aware Decentralized Networked MARL
- Title(参考訳): 逆認知型分散ネットワーク型marlのためのアルゴリズム
- Authors: Soumajyoti Sarkar
- Abstract要約: 既存のMARLアルゴリズムのコンセンサス更新に脆弱性を導入する。
我々は,非敵エージェントが敵の存在下で合意に達することを可能にするアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized multi-agent reinforcement learning (MARL) algorithms have
become popular in the literature since it allows heterogeneous agents to have
their own reward functions as opposed to canonical multi-agent Markov Decision
Process (MDP) settings which assume common reward functions over all agents. In
this work, we follow the existing work on collaborative MARL where agents in a
connected time varying network can exchange information among each other in
order to reach a consensus. We introduce vulnerabilities in the consensus
updates of existing MARL algorithms where agents can deviate from their usual
consensus update, who we term as adversarial agents. We then proceed to provide
an algorithm that allows non-adversarial agents to reach a consensus in the
presence of adversaries under a constrained setting.
- Abstract(参考訳): 分散マルチエージェント強化学習 (marl) アルゴリズムは, 全エージェントの共通報酬関数を仮定する正準マルチエージェントマルコフ決定プロセス (mdp) とは対照的に, 異種エージェントが独自の報酬機能を持つことができるため, 文献で広く用いられている。
本稿では,コラボレーティブ marl における既存の研究について述べる。コラボレーティブ marl では,コラボレーティブなネットワーク内のエージェントがコンセンサスに達するために相互に情報を交換できる。
我々は既存のMARLアルゴリズムのコンセンサス更新に脆弱性を導入し、エージェントは通常のコンセンサス更新から逸脱することができる。
次に,非敵エージェントが制約条件下で敵の存在下でコンセンサスに達することを可能にするアルゴリズムを提案する。
関連論文リスト
- Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
マルチエージェント強化学習(MARL)におけるハイブリッド実行の導入
MARLは、エージェントが任意の通信レベルを持つ協調タスクを実行時に完了させることを目標とする新しいパラダイムである。
我々は,自動回帰予測モデルを用いたMAROを集中的に訓練し,行方不明者の観察を推定する手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T14:58:32Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - On the Use and Misuse of Absorbing States in Multi-agent Reinforcement
Learning [55.95253619768565]
現在のMARLアルゴリズムは、実験を通してグループ内のエージェントの数が固定されていると仮定している。
多くの実践的な問題において、エージェントはチームメイトの前に終了する可能性がある。
本稿では,吸収状態を持つ完全連結層ではなく,注意を用いた既存の最先端MARLアルゴリズムのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-10T23:45:08Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
ToMとエージェント間の効果的な協調を開発するための適応的学習アルゴリズムを提案する。
アルゴリズムはToMをモデル化せずに従来の分散実行アルゴリズムを全て上回る2つのゲームで評価する。
論文 参考訳(メタデータ) (2021-09-30T23:28:00Z) - Adversarial attacks in consensus-based multi-agent reinforcement
learning [0.0]
敵エージェントがネットワーク内の他のエージェント全員を説得して、ネットワークが望む目的を最適化するポリシーを実装することができることを示す。
この意味では、標準コンセンサスベースのMARLアルゴリズムは攻撃に脆弱である。
論文 参考訳(メタデータ) (2021-03-11T21:44:18Z) - Multi-Agent Trust Region Policy Optimization [34.91180300856614]
TRPOのポリシー更新は,マルチエージェントケースに対する分散コンセンサス最適化問題に変換可能であることを示す。
マルチエージェントTRPO(MATRPO)と呼ばれる分散MARLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-15T17:49:47Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
エージェントがコミュニケーションなしで情報を交換できる半通信方式を提案する。
近接するエージェントを小さなグループに分割し,グループ内のエージェントの信念を最小化するグループベースのモジュールを提案する。
その結果,提案手法はSMACベンチマークの大幅な改善を実現していることがわかった。
論文 参考訳(メタデータ) (2020-08-20T07:07:20Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Information State Embedding in Partially Observable Cooperative
Multi-Agent Reinforcement Learning [19.617644643147948]
エージェントの履歴を圧縮する情報状態埋め込みの概念を導入する。
圧縮誤差が分散制御における結果値関数にどのように影響するかを定量化する。
提案された組込み学習パイプラインは、既存の(部分的に観測可能な)MARLアルゴリズムのブラックボックスを開く。
論文 参考訳(メタデータ) (2020-04-02T16:03:42Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIXは、中央集権的なエンドツーエンドで分散ポリシーをトレーニングできる新しい価値ベースの手法である。
深層多エージェント強化学習のための新しいベンチマークとして,StarCraft Multi-Agent Challenge (SMAC)を提案する。
論文 参考訳(メタデータ) (2020-03-19T16:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。