An Algorithm For Adversary Aware Decentralized Networked MARL
- URL: http://arxiv.org/abs/2305.05573v2
- Date: Thu, 15 Jun 2023 18:35:56 GMT
- Title: An Algorithm For Adversary Aware Decentralized Networked MARL
- Authors: Soumajyoti Sarkar
- Abstract summary: We introduce vulnerabilities in the consensus updates of existing MARL algorithms.
We provide an algorithm that allows non-adversarial agents to reach a consensus in the presence of adversaries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized multi-agent reinforcement learning (MARL) algorithms have
become popular in the literature since it allows heterogeneous agents to have
their own reward functions as opposed to canonical multi-agent Markov Decision
Process (MDP) settings which assume common reward functions over all agents. In
this work, we follow the existing work on collaborative MARL where agents in a
connected time varying network can exchange information among each other in
order to reach a consensus. We introduce vulnerabilities in the consensus
updates of existing MARL algorithms where agents can deviate from their usual
consensus update, who we term as adversarial agents. We then proceed to provide
an algorithm that allows non-adversarial agents to reach a consensus in the
presence of adversaries under a constrained setting.
Related papers
- Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
We introduce hybrid execution in multi-agent reinforcement learning (MARL)
MARL is a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time.
We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations.
arXiv Detail & Related papers (2022-10-12T14:58:32Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - On the Use and Misuse of Absorbing States in Multi-agent Reinforcement
Learning [55.95253619768565]
Current MARL algorithms assume that the number of agents within a group remains fixed throughout an experiment.
In many practical problems, an agent may terminate before their teammates.
We present a novel architecture for an existing state-of-the-art MARL algorithm which uses attention instead of a fully connected layer with absorbing states.
arXiv Detail & Related papers (2021-11-10T23:45:08Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
We propose an adaptive training algorithm to develop effective collaboration between agents with ToM.
We evaluate our algorithms with two games, where our algorithm surpasses all previous decentralized execution algorithms without modeling ToM.
arXiv Detail & Related papers (2021-09-30T23:28:00Z) - Adversarial attacks in consensus-based multi-agent reinforcement
learning [0.0]
We show that an adversarial agent can persuade all the other agents in the network to implement policies that optimize an objective that it desires.
In this sense, the standard consensus-based MARL algorithms are fragile to attacks.
arXiv Detail & Related papers (2021-03-11T21:44:18Z) - Multi-Agent Trust Region Policy Optimization [34.91180300856614]
We show that the policy update of TRPO can be transformed into a distributed consensus optimization problem for multi-agent cases.
We propose a decentralized MARL algorithm, which we call multi-agent TRPO (MATRPO)
arXiv Detail & Related papers (2020-10-15T17:49:47Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
We propose a semi-communication method to enable agents can exchange information without communication.
Inspired by the neighborhood cognitive consistency, we propose a group-based module to divide adjacent agents into a small group and minimize in-group agents' beliefs.
Results reveal that the proposed method achieves a significant improvement in the SMAC benchmark.
arXiv Detail & Related papers (2020-08-20T07:07:20Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Information State Embedding in Partially Observable Cooperative
Multi-Agent Reinforcement Learning [19.617644643147948]
We introduce the concept of an information state embedding that serves to compress agents' histories.
We quantify how the compression error influences the resulting value functions for decentralized control.
The proposed embed-then-learn pipeline opens the black-box of existing (partially observable) MARL algorithms.
arXiv Detail & Related papers (2020-04-02T16:03:42Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIX is a novel value-based method that can train decentralised policies in a centralised end-to-end fashion.
We propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2020-03-19T16:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.