A duality framework for analyzing random feature and two-layer neural networks
- URL: http://arxiv.org/abs/2305.05642v2
- Date: Mon, 14 Oct 2024 01:08:16 GMT
- Title: A duality framework for analyzing random feature and two-layer neural networks
- Authors: Hongrui Chen, Jihao Long, Lei Wu,
- Abstract summary: We consider the problem of learning functions within the $mathcalF_p,pi$ and Barron spaces.
We establish a dual equivalence between approximation and estimation, and then apply it to study the learning of the preceding function spaces.
- Score: 7.400520323325074
- License:
- Abstract: We consider the problem of learning functions within the $\mathcal{F}_{p,\pi}$ and Barron spaces, which play crucial roles in understanding random feature models (RFMs), two-layer neural networks, as well as kernel methods. Leveraging tools from information-based complexity (IBC), we establish a dual equivalence between approximation and estimation, and then apply it to study the learning of the preceding function spaces. The duality allows us to focus on the more tractable problem between approximation and estimation. To showcase the efficacy of our duality framework, we delve into two important but under-explored problems: 1) Random feature learning beyond kernel regime: We derive sharp bounds for learning $\mathcal{F}_{p,\pi}$ using RFMs. Notably, the learning is efficient without the curse of dimensionality for $p>1$. This underscores the extended applicability of RFMs beyond the traditional kernel regime, since $\mathcal{F}_{p,\pi}$ with $p<2$ is strictly larger than the corresponding reproducing kernel Hilbert space (RKHS) where $p=2$. 2) The $L^\infty$ learning of RKHS: We establish sharp, spectrum-dependent characterizations for the convergence of $L^\infty$ learning error in both noiseless and noisy settings. Surprisingly, we show that popular kernel ridge regression can achieve near-optimal performance in $L^\infty$ learning, despite it primarily minimizing square loss. To establish the aforementioned duality, we introduce a type of IBC, termed $I$-complexity, to measure the size of a function class. Notably, $I$-complexity offers a tight characterization of learning in noiseless settings, yields lower bounds comparable to Le Cam's in noisy settings, and is versatile in deriving upper bounds. We believe that our duality framework holds potential for broad application in learning analysis across more scenarios.
Related papers
- Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods [0.0]
We introduce an efficient method for the estimator, called Brownian Kernel Neural Network (BKerNN)
We show that BKerNN's expected risk converges to the minimal risk with explicit high-probability rates of $O( min((d/n)1/2, n-1/6)$ (up to logarithmic factors)
arXiv Detail & Related papers (2024-07-24T13:46:50Z) - Smoothed Analysis for Learning Concepts with Low Intrinsic Dimension [17.485243410774814]
In traditional models of supervised learning, the goal of a learner is to output a hypothesis that is competitive (to within $epsilon$) of the best fitting concept from some class.
We introduce a smoothed-analysis framework that requires a learner to compete only with the best agnostic.
We obtain the first algorithm forally learning intersections of $k$-halfspaces in time.
arXiv Detail & Related papers (2024-07-01T04:58:36Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Random features and polynomial rules [0.0]
We present a generalization of the performance of random features models for generic supervised learning problems with Gaussian data.
We find good agreement far from the limits where $Dto infty$ and at least one between $P/DK$, $N/DL$ remains finite.
arXiv Detail & Related papers (2024-02-15T18:09:41Z) - A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning
with General Function Approximation [66.26739783789387]
We propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for reinforcement learning.
MQL-UCB achieves minimax optimal regret of $tildeO(dsqrtHK)$ when $K$ is sufficiently large and near-optimal policy switching cost.
Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
arXiv Detail & Related papers (2023-11-26T08:31:57Z) - Variance-reduced accelerated methods for decentralized stochastic
double-regularized nonconvex strongly-concave minimax problems [7.5573375809946395]
We consider a network of $m$ computing agents collaborate via peer-to-peer communications.
Our algorithmic framework introduces agrangian multiplier to eliminate the consensus constraint on the dual variable.
To the best of our knowledge, this is the first work which provides convergence guarantees for NCSC minimax problems with general non regularizers applied to both the primal and dual variables.
arXiv Detail & Related papers (2023-07-14T01:32:16Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL)
We focus on the value based algorithm with the $epsilon$-greedy exploration via deep (and two-layer) neural networks endowed by Besov (and Barron) function spaces.
Our analysis reformulates the temporal difference error in an $L2(mathrmdmu)$-integrable space over a certain averaged measure $mu$, and transforms it to a generalization problem under the non-iid setting.
arXiv Detail & Related papers (2022-09-15T15:42:47Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z) - Kernel-Based Reinforcement Learning: A Finite-Time Analysis [53.47210316424326]
We introduce Kernel-UCBVI, a model-based optimistic algorithm that leverages the smoothness of the MDP and a non-parametric kernel estimator of the rewards.
We empirically validate our approach in continuous MDPs with sparse rewards.
arXiv Detail & Related papers (2020-04-12T12:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.