Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods
- URL: http://arxiv.org/abs/2407.17280v1
- Date: Wed, 24 Jul 2024 13:46:50 GMT
- Title: Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods
- Authors: Bertille Follain, Francis Bach,
- Abstract summary: We introduce an efficient method for the estimator, called Brownian Kernel Neural Network (BKerNN)
We show that BKerNN's expected risk converges to the minimal risk with explicit high-probability rates of $O( min((d/n)1/2, n-1/6)$ (up to logarithmic factors)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method for feature learning and function estimation in supervised learning via regularised empirical risk minimisation. Our approach considers functions as expectations of Sobolev functions over all possible one-dimensional projections of the data. This framework is similar to kernel ridge regression, where the kernel is $\mathbb{E}_w ( k^{(B)}(w^\top x,w^\top x^\prime))$, with $k^{(B)}(a,b) := \min(|a|, |b|)1_{ab>0}$ the Brownian kernel, and the distribution of the projections $w$ is learnt. This can also be viewed as an infinite-width one-hidden layer neural network, optimising the first layer's weights through gradient descent and explicitly adjusting the non-linearity and weights of the second layer. We introduce an efficient computation method for the estimator, called Brownian Kernel Neural Network (BKerNN), using particles to approximate the expectation. The optimisation is principled due to the positive homogeneity of the Brownian kernel. Using Rademacher complexity, we show that BKerNN's expected risk converges to the minimal risk with explicit high-probability rates of $O( \min((d/n)^{1/2}, n^{-1/6}))$ (up to logarithmic factors). Numerical experiments confirm our optimisation intuitions, and BKerNN outperforms kernel ridge regression, and favourably compares to a one-hidden layer neural network with ReLU activations in various settings and real data sets.
Related papers
- Preconditioned Gradient Descent Finds Over-Parameterized Neural Networks with Sharp Generalization for Nonparametric Regression [8.130817534654089]
We consider nonparametric regression by a two-layer neural network trained by gradient descent (GD) or its variant in this paper.
We show that, if the neural network is trained with a novel Preconditioned Gradient Descent (PGD) with early stopping and the target function has spectral bias widely studied in the deep learning literature, the trained network renders a particularly sharp generalization bound with a minimax optimal rate of $cO(1/n4alpha/(4alpha+1)$.
arXiv Detail & Related papers (2024-07-16T03:38:34Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Multi-layer random features and the approximation power of neural networks [4.178980693837599]
We prove that a reproducing kernel Hilbert space contains only functions that can be approximated by the architecture.
We show that if eigenvalues of the integral operator of the NNGP decay slower than $k-n-frac23$ where $k$ is an order of an eigenvalue, our theorem guarantees a more succinct neural network approximation than Barron's theorem.
arXiv Detail & Related papers (2024-04-26T14:57:56Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - Deformed semicircle law and concentration of nonlinear random matrices
for ultra-wide neural networks [29.03095282348978]
We study the limiting spectral distributions of two empirical kernel matrices associated with $f(X)$.
We show that random feature regression induced by the empirical kernel achieves the same performance as its limiting kernel regression under the ultra-wide regime.
arXiv Detail & Related papers (2021-09-20T05:25:52Z) - Neural Optimization Kernel: Towards Robust Deep Learning [13.147925376013129]
Recent studies show a connection between neural networks (NN) and kernel methods.
This paper proposes a novel kernel family named Kernel (NOK)
We show that over parameterized deep NN (NOK) can increase the expressive power to reduce empirical risk and reduce the bound generalization at the same time.
arXiv Detail & Related papers (2021-06-11T00:34:55Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Regularization Matters: A Nonparametric Perspective on Overparametrized
Neural Network [20.132432350255087]
Overparametrized neural networks trained by tangent descent (GD) can provably overfit any training data.
This paper studies how well overparametrized neural networks can recover the true target function in the presence of random noises.
arXiv Detail & Related papers (2020-07-06T01:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.