DOCTOR: A Multi-Disease Detection Continual Learning Framework Based on Wearable Medical Sensors
- URL: http://arxiv.org/abs/2305.05738v5
- Date: Wed, 19 Jun 2024 01:06:15 GMT
- Title: DOCTOR: A Multi-Disease Detection Continual Learning Framework Based on Wearable Medical Sensors
- Authors: Chia-Hao Li, Niraj K. Jha,
- Abstract summary: We propose DOCTOR, a multi-disease detection continual learning framework based on wearable medical sensors (WMSs)
It employs a multi-headed deep neural network (DNN) and a replay-style CL algorithm.
It achieves 1.43 times better average test accuracy, 1.25 times better F1-score, and 0.41 higher backward transfer than the naive fine-tuning framework.
- Score: 3.088223994180069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern advances in machine learning (ML) and wearable medical sensors (WMSs) in edge devices have enabled ML-driven disease detection for smart healthcare. Conventional ML-driven methods for disease detection rely on customizing individual models for each disease and its corresponding WMS data. However, such methods lack adaptability to distribution shifts and new task classification classes. In addition, they need to be rearchitected and retrained from scratch for each new disease. Moreover, installing multiple ML models in an edge device consumes excessive memory, drains the battery faster, and complicates the detection process. To address these challenges, we propose DOCTOR, a multi-disease detection continual learning (CL) framework based on WMSs. It employs a multi-headed deep neural network (DNN) and a replay-style CL algorithm. The CL algorithm enables the framework to continually learn new missions where different data distributions, classification classes, and disease detection tasks are introduced sequentially. It counteracts catastrophic forgetting with a data preservation method and a synthetic data generation (SDG) module. The data preservation method preserves the most informative subset of real training data from previous missions for exemplar replay. The SDG module models the probability distribution of the real training data and generates synthetic data for generative replay while retaining data privacy. The multi-headed DNN enables DOCTOR to detect multiple diseases simultaneously based on user WMS data. We demonstrate DOCTOR's efficacy in maintaining high disease classification accuracy with a single DNN model in various CL experiments. In complex scenarios, DOCTOR achieves 1.43 times better average test accuracy, 1.25 times better F1-score, and 0.41 higher backward transfer than the naive fine-tuning framework with a small model size of less than 350KB.
Related papers
- The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease
Classification with Incomplete Data [8.536869574065195]
Multi-Modal Mixing Transformer (3MAT) is a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios.
We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios.
arXiv Detail & Related papers (2022-10-01T11:31:02Z) - Longitudinal detection of new MS lesions using Deep Learning [0.0]
We describe a deep-learning-based pipeline addressing the task of detecting and segmenting new MS lesions.
First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points.
Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions.
arXiv Detail & Related papers (2022-06-16T16:09:04Z) - Learning Multitask Gaussian Bayesian Networks [11.745963019193955]
Major depressive disorder (MDD) requires study of brain functional connectivity alterations for patients.
The amount of data collected during an fMRI scan is too limited to provide sufficient information for individual analysis.
We propose a multitask Gaussian Bayesian network framework capable for identifying individual disease-induced alterations for MDD patients.
arXiv Detail & Related papers (2022-05-11T08:38:00Z) - The Severity Prediction of The Binary And Multi-Class Cardiovascular
Disease -- A Machine Learning-Based Fusion Approach [0.0]
Recently CVDs, or cardiovascular disease, have become a leading cause of death around the world.
In this research, some fusion models have been constructed to diagnose CVDs along with its severity.
The highest accuracy for multiclass classification was found as 75%, and it was 95% for binary.
arXiv Detail & Related papers (2022-03-09T18:06:24Z) - Federated Contrastive Learning for Dermatological Disease Diagnosis via
On-device Learning [15.862924197017264]
We propose an on-device framework for dermatological disease diagnosis with limited labels.
The proposed framework effectively improves the recall and precision of dermatological disease diagnosis compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-02-14T01:11:44Z) - Overcoming Catastrophic Forgetting with Gaussian Mixture Replay [79.0660895390689]
We present a rehearsal-based approach for continual learning (CL) based on Gaussian Mixture Models (GMM)
We mitigate catastrophic forgetting (CF) by generating samples from previous tasks and merging them with current training data.
We evaluate GMR on multiple image datasets, which are divided into class-disjoint sub-tasks.
arXiv Detail & Related papers (2021-04-19T11:41:34Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.