Compressing neural network by tensor network with exponentially fewer variational parameters
- URL: http://arxiv.org/abs/2305.06058v2
- Date: Fri, 3 May 2024 13:59:46 GMT
- Title: Compressing neural network by tensor network with exponentially fewer variational parameters
- Authors: Yong Qing, Ke Li, Peng-Fei Zhou, Shi-Ju Ran,
- Abstract summary: Neural network (NN) designed for challenging machine learning tasks contains massive variational parameters.
We propose a general compression scheme that significantly reduces variational parameters of NN by encoding them to deep automatically-differentiable tensor network (ADTN)
Our work suggests TN as an exceptionally efficient mathematical structure for representing variational parameters of NN's.
- Score: 4.373746415510521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters. High complexity of NN, if unbounded or unconstrained, might unpredictably cause severe issues including over-fitting, loss of generalization power, and unbearable cost of hardware. In this work, we propose a general compression scheme that significantly reduces the variational parameters of NN by encoding them to deep automatically-differentiable tensor network (ADTN) that contains exponentially-fewer free parameters. Superior compression performance of our scheme is demonstrated on several widely-recognized NN's (FC-2, LeNet-5, AlextNet, ZFNet and VGG-16) and datasets (MNIST, CIFAR-10 and CIFAR-100). For instance, we compress two linear layers in VGG-16 with approximately $10^{7}$ parameters to two ADTN's with just 424 parameters, where the testing accuracy on CIFAR-10 is improved from $90.17 \%$ to $91.74\%$. Our work suggests TN as an exceptionally efficient mathematical structure for representing the variational parameters of NN's, which exhibits superior compressibility over the commonly-used matrices and multi-way arrays.
Related papers
- "Lossless" Compression of Deep Neural Networks: A High-dimensional
Neural Tangent Kernel Approach [49.744093838327615]
We provide a novel compression approach to wide and fully-connected emphdeep neural nets.
Experiments on both synthetic and real-world data are conducted to support the advantages of the proposed compression scheme.
arXiv Detail & Related papers (2024-03-01T03:46:28Z) - Scalable Neural Network Kernels [22.299704296356836]
We introduce scalable neural network kernels (SNNKs), capable of approximating regular feedforward layers (FFLs)
We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures.
Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
arXiv Detail & Related papers (2023-10-20T02:12:56Z) - Generalization Error Bounds for Deep Neural Networks Trained by SGD [3.148524502470734]
Generalization error bounds for deep trained by gradient descent (SGD) are derived.
The bounds explicitly depend on the loss along the training trajectory.
Results show that our bounds are non-vacuous and robust with the change of neural networks and network hypers.
arXiv Detail & Related papers (2022-06-07T13:46:10Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Toward Compact Deep Neural Networks via Energy-Aware Pruning [2.578242050187029]
We propose a novel energy-aware pruning method that quantifies the importance of each filter in the network using nuclear-norm (NN)
We achieve competitive results with 40.4/49.8% of FLOPs and 45.9/52.9% of parameter reduction with 94.13/94.61% in the Top-1 accuracy with ResNet-56/110 on CIFAR-10.
arXiv Detail & Related papers (2021-03-19T15:33:16Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - DiffRNN: Differential Verification of Recurrent Neural Networks [3.4423518864863154]
Recurrent neural networks (RNNs) have become popular in a variety of applications such as image processing, data classification, speech recognition, and as controllers in autonomous systems.
We propose DIFFRNN, the first differential verification method for RNNs to certify the equivalence of two structurally similar neural networks.
We demonstrate the practical efficacy of our technique on a variety of benchmarks and show that DIFFRNN outperforms state-of-the-art verification tools such as POPQORN.
arXiv Detail & Related papers (2020-07-20T14:14:35Z) - Neural Parameter Allocation Search [57.190693718951316]
Training neural networks requires increasing amounts of memory.
Existing methods assume networks have many identical layers and utilize hand-crafted sharing strategies that fail to generalize.
We introduce Neural Allocation Search (NPAS), a novel task where the goal is to train a neural network given an arbitrary, fixed parameter budget.
NPAS covers both low-budget regimes, which produce compact networks, as well as a novel high-budget regime, where additional capacity can be added to boost performance without increasing inference FLOPs.
arXiv Detail & Related papers (2020-06-18T15:01:00Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - Tensor-to-Vector Regression for Multi-channel Speech Enhancement based
on Tensor-Train Network [53.47564132861866]
We propose a tensor-to-vector regression approach to multi-channel speech enhancement.
The key idea is to cast the conventional deep neural network (DNN) based vector-to-vector regression formulation under a tensor-train network (TTN) framework.
In 8-channel conditions, a PESQ of 3.12 is achieved using 20 million parameters for TTN, whereas a DNN with 68 million parameters can only attain a PESQ of 3.06.
arXiv Detail & Related papers (2020-02-03T02:58:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.