Interpretable multimodal sentiment analysis based on textual modality
descriptions by using large-scale language models
- URL: http://arxiv.org/abs/2305.06162v3
- Date: Fri, 12 May 2023 00:39:13 GMT
- Title: Interpretable multimodal sentiment analysis based on textual modality
descriptions by using large-scale language models
- Authors: Sixia Li and Shogo Okada
- Abstract summary: Multimodal sentiment analysis is an important area for understanding the user's internal states.
Previous works have attempted to use attention weights or vector distributions to provide interpretability.
This study proposed a novel approach to provide interpretability by converting nonverbal modalities into text descriptions.
- Score: 1.4213973379473654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal sentiment analysis is an important area for understanding the
user's internal states. Deep learning methods were effective, but the problem
of poor interpretability has gradually gained attention. Previous works have
attempted to use attention weights or vector distributions to provide
interpretability. However, their explanations were not intuitive and can be
influenced by different trained models. This study proposed a novel approach to
provide interpretability by converting nonverbal modalities into text
descriptions and by using large-scale language models for sentiment
predictions. This provides an intuitive approach to directly interpret what
models depend on with respect to making decisions from input texts, thus
significantly improving interpretability. Specifically, we convert descriptions
based on two feature patterns for the audio modality and discrete action units
for the facial modality. Experimental results on two sentiment analysis tasks
demonstrated that the proposed approach maintained, or even improved
effectiveness for sentiment analysis compared to baselines using conventional
features, with the highest improvement of 2.49% on the F1 score. The results
also showed that multimodal descriptions have similar characteristics on fusing
modalities as those of conventional fusion methods. The results demonstrated
that the proposed approach is interpretable and effective for multimodal
sentiment analysis.
Related papers
- Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Adversarial Attacks on the Interpretation of Neuron Activation
Maximization [70.5472799454224]
Activation-maximization approaches are used to interpret and analyze trained deep-learning models.
In this work, we consider the concept of an adversary manipulating a model for the purpose of deceiving the interpretation.
arXiv Detail & Related papers (2023-06-12T19:54:33Z) - Beyond Model Interpretability: On the Faithfulness and Adversarial
Robustness of Contrastive Textual Explanations [2.543865489517869]
This work motivates textual counterfactuals by laying the ground for a novel evaluation scheme inspired by the faithfulness of explanations.
Experiments on sentiment analysis data show that the connectedness of counterfactuals to their original counterparts is not obvious in both models.
arXiv Detail & Related papers (2022-10-17T09:50:02Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
This paper aims to estimate and mitigate the bad effect of textual modality for strong OOD generalization.
Inspired by this, we devise a model-agnostic counterfactual framework for multimodal sentiment analysis.
arXiv Detail & Related papers (2022-07-24T03:57:40Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - Prediction or Comparison: Toward Interpretable Qualitative Reasoning [16.02199526395448]
Current approaches use either semantics to transform natural language inputs into logical expressions or a "black-box" model to solve them in one step.
In this work, we categorize qualitative reasoning tasks into two types: prediction and comparison.
In particular, we adopt neural network modules trained in an end-to-end manner to simulate the two reasoning processes.
arXiv Detail & Related papers (2021-06-04T10:27:55Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.