Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability
- URL: http://arxiv.org/abs/2412.01365v2
- Date: Sun, 09 Feb 2025 09:06:44 GMT
- Title: Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability
- Authors: Wen-Dong Jiang, Chih-Yung Chang, Show-Jane Yen, Diptendu Sinha Roy,
- Abstract summary: Real Explainer (RealExp) is an interpretability method that decouples the Shapley Value into individual feature importance and feature correlation importance.
RealExp enhances interpretability by precisely quantifying both individual feature contributions and their interactions.
- Score: 1.8274323268621635
- License:
- Abstract: Deep learning has achieved remarkable success in processing and managing unstructured data. However, its "black box" nature imposes significant limitations, particularly in sensitive application domains. While existing interpretable machine learning methods address some of these issues, they often fail to adequately consider feature correlations and provide insufficient evaluation of model decision paths. To overcome these challenges, this paper introduces Real Explainer (RealExp), an interpretability computation method that decouples the Shapley Value into individual feature importance and feature correlation importance. By incorporating feature similarity computations, RealExp enhances interpretability by precisely quantifying both individual feature contributions and their interactions, leading to more reliable and nuanced explanations. Additionally, this paper proposes a novel interpretability evaluation criterion focused on elucidating the decision paths of deep learning models, going beyond traditional accuracy-based metrics. Experimental validations on two unstructured data tasks -- image classification and text sentiment analysis -- demonstrate that RealExp significantly outperforms existing methods in interpretability. Case studies further illustrate its practical value: in image classification, RealExp aids in selecting suitable pre-trained models for specific tasks from an interpretability perspective; in text classification, it enables the optimization of models and approximates the performance of a fine-tuned GPT-Ada model using traditional bag-of-words approaches.
Related papers
- Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
Local Interpretable Model-Agnostic Explanations (LIME) systematically enhance model robustness.
Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.
arXiv Detail & Related papers (2024-12-25T17:32:45Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Supervised Feature Compression based on Counterfactual Analysis [3.2458225810390284]
This work aims to leverage Counterfactual Explanations to detect the important decision boundaries of a pre-trained black-box model.
Using the discretized dataset, an optimal Decision Tree can be trained that resembles the black-box model, but that is interpretable and compact.
arXiv Detail & Related papers (2022-11-17T21:16:14Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
Influence functions explain the decisions of a model by identifying influential training examples.
We conduct a comparison between influence functions and common word-saliency methods on representative tasks.
We develop a new measure based on influence functions that can reveal artifacts in training data.
arXiv Detail & Related papers (2020-05-14T00:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.