Multi-Prompt with Depth Partitioned Cross-Modal Learning
- URL: http://arxiv.org/abs/2305.06221v4
- Date: Tue, 30 Apr 2024 10:39:19 GMT
- Title: Multi-Prompt with Depth Partitioned Cross-Modal Learning
- Authors: Yingjie Tian, Yiqi Wang, Xianda Guo, Zheng Zhu, Long Chen,
- Abstract summary: Partitioned Multi-modal Prompt (PMPO) is a multi-modal prompting technique that extends the soft prompt from a single learnable prompt to multiple prompts.
Our method divides the visual encoder depths and connects learnable prompts to the separated visual depths, enabling different prompts to capture hierarchical contextual depths.
We evaluate the effectiveness of our approach on three challenging tasks: new class generalization, cross-dataset evaluation, and domain generalization.
- Score: 25.239388488952375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, soft prompt learning methods have been proposed to fine-tune large-scale vision-language pre-trained models for various downstream tasks. These methods typically combine learnable textual tokens with class tokens as input for models with frozen parameters. However, they often employ a single prompt to describe class contexts, failing to capture categories' diverse attributes adequately. This study introduces the Partitioned Multi-modal Prompt (PMPO), a multi-modal prompting technique that extends the soft prompt from a single learnable prompt to multiple prompts. Our method divides the visual encoder depths and connects learnable prompts to the separated visual depths, enabling different prompts to capture the hierarchical contextual depths of visual representations. Furthermore, to maximize the advantages of multi-prompt learning, we incorporate prior information from manually designed templates and learnable multi-prompts, thus improving the generalization capabilities of our approach. We evaluate the effectiveness of our approach on three challenging tasks: new class generalization, cross-dataset evaluation, and domain generalization. For instance, our method achieves a $79.28$ harmonic mean, averaged over 11 diverse image recognition datasets ($+7.62$ compared to CoOp), demonstrating significant competitiveness compared to state-of-the-art prompting methods.
Related papers
- Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - COMMA: Co-Articulated Multi-Modal Learning [39.778958624066185]
We propose Co-Articulated Multi-Modal Learning (COMMA) to handle the limitations of previous methods.
Our method considers prompts from both branches to generate the prompts to enhance the representation alignment of both branches.
We evaluate our method across three representative tasks of generalization to novel classes, new target datasets and unseen domain shifts.
arXiv Detail & Related papers (2023-12-30T15:47:36Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
We propose a new method, Decoupled Prompt Learning, which reformulates the attention in prompt learning to alleviate this problem.
Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning.
arXiv Detail & Related papers (2023-08-19T15:48:38Z) - CPL: Counterfactual Prompt Learning for Vision and Language Models [76.18024920393245]
This paper presents a novel underlinetextbfCounterfactual underlinetextbfPrompt underlinetextbfLearning (CPL) method for vision and language models.
CPL simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.
Experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks.
arXiv Detail & Related papers (2022-10-19T08:06:39Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Prompt Learning with Optimal Transport for Vision-Language Models [25.928455328563402]
We learn multiple comprehensive prompts to describe diverse characteristics of categories such as intrinsic attributes or extrinsic contexts.
To solve this problem, we propose to apply optimal transport to match the vision and text modalities.
In the inner loop, we optimize the optimal transport distance to align visual features and prompts by the Sinkhorn algorithm, while in the outer loop, we learn the prompts by this distance from the supervised data.
arXiv Detail & Related papers (2022-10-03T22:21:07Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z) - Instance-aware Prompt Learning for Language Understanding and Generation [49.22899822734549]
We propose an instance-aware prompt learning method that learns a different prompt for each instance.
Our method achieves the state-of-the-art on the SuperGLUE few-shot learning benchmark.
arXiv Detail & Related papers (2022-01-18T17:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.