論文の概要: Analyzing Bias in Diffusion-based Face Generation Models
- arxiv url: http://arxiv.org/abs/2305.06402v1
- Date: Wed, 10 May 2023 18:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 16:53:02.790314
- Title: Analyzing Bias in Diffusion-based Face Generation Models
- Title(参考訳): 拡散型顔生成モデルにおけるバイアスの解析
- Authors: Malsha V. Perera and Vishal M. Patel
- Abstract要約: 拡散モデルは、合成データ生成と画像編集アプリケーションでますます人気がある。
本研究では, 性別, 人種, 年齢などの属性に関して, 拡散型顔生成モデルにおけるバイアスの存在について検討する。
本研究は,GAN(Generative Adversarial Network)とGAN(Generative Adversarial Network)をベースとした顔生成モデルにおいて,データセットサイズが属性組成および知覚品質に与える影響について検討する。
- 参考スコア(独自算出の注目度): 75.80072686374564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are becoming increasingly popular in synthetic data
generation and image editing applications. However, these models can amplify
existing biases and propagate them to downstream applications. Therefore, it is
crucial to understand the sources of bias in their outputs. In this paper, we
investigate the presence of bias in diffusion-based face generation models with
respect to attributes such as gender, race, and age. Moreover, we examine how
dataset size affects the attribute composition and perceptual quality of both
diffusion and Generative Adversarial Network (GAN) based face generation models
across various attribute classes. Our findings suggest that diffusion models
tend to worsen distribution bias in the training data for various attributes,
which is heavily influenced by the size of the dataset. Conversely, GAN models
trained on balanced datasets with a larger number of samples show less bias
across different attributes.
- Abstract(参考訳): 拡散モデルは、合成データ生成や画像編集アプリケーションで人気が高まっている。
しかし、これらのモデルは既存のバイアスを増幅し、下流アプリケーションへ伝播することができる。
そのため、出力のバイアス源を理解することが不可欠である。
本稿では,性別,人種,年齢といった属性に関して,拡散に基づく顔生成モデルにおけるバイアスの存在について検討する。
さらに,データセットのサイズが,様々な属性クラスにおける拡散とGANに基づく顔生成モデルの両方の属性組成と知覚品質に与える影響について検討した。
実験結果から,拡散モデルが各種属性のトレーニングデータの分布バイアスを悪化させる傾向にあり,データセットのサイズに大きく影響することが示唆された。
逆に、バランスのとれたデータセットに基づいてトレーニングされたganモデルは、多くのサンプルで異なる属性に対するバイアスが少ない。
関連論文リスト
- Debiasing Classifiers by Amplifying Bias with Latent Diffusion and Large Language Models [9.801159950963306]
DiffuBiasはテキスト・画像生成のための新しいパイプラインであり、バイアス・コンフリクト・サンプルを生成することで分類器の堅牢性を高める。
DrouBiasは、安定拡散モデルを活用する最初のアプローチである。
総合実験により,DiffuBiasがベンチマークデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-11-25T04:11:16Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Less can be more: representational vs. stereotypical gender bias in facial expression recognition [3.9698529891342207]
機械学習モデルは、トレーニングデータからバイアスを継承し、差別的または不正確な予測につながる。
本稿では、データセットから機械学習モデルへの人口統計バイアスの伝播について検討する。
ジェンダーの人口構成に焦点をあて、表現とステレオタイプという2種類の偏見を分析した。
論文 参考訳(メタデータ) (2024-06-25T09:26:49Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
同じスタートノイズ入力と決定論的サンプリングが与えられた場合、異なる拡散モデルはしばしば驚くほど類似した出力が得られる。
拡散モデルはトレーニングデータサイズの影響を受けやすい分布を学習していることを示す。
この価値ある性質は、条件付き使用、逆問題解決、モデル微調整など、拡散モデルの多くの変種に一般化される。
論文 参考訳(メタデータ) (2023-10-08T19:02:46Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z) - Extracting Training Data from Diffusion Models [77.11719063152027]
拡散モデルはトレーニングデータから個々の画像を記憶し,生成時に出力することを示す。
生成とフィルタのパイプラインを用いて、最先端のモデルから数千以上のトレーニング例を抽出する。
さまざまな設定で何百もの拡散モデルをトレーニングし、モデリングとデータ決定の違いがプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2023-01-30T18:53:09Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - Diffusion Models: A Comprehensive Survey of Methods and Applications [10.557289965753437]
拡散モデル(英: Diffusion model)は、密度理論の確立を伴う様々なタスクにおいて印象的な結果を示す深層生成モデルのクラスである。
近年,拡散モデルの性能向上への熱意が高まっている。
論文 参考訳(メタデータ) (2022-09-02T02:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。